文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于胎儿超声和母婴数据的集成学习预测引产分娩方式。

Ensemble learning for fetal ultrasound and maternal-fetal data to predict mode of delivery after labor induction.

机构信息

Faculty of Medicine of University of Coimbra, Obstetrics Department, University and Hospitalar Centre of Coimbra, Coimbra, Portugal.

Maternidade Doutor Daniel de Matos, R. Miguel Torga, 3030-165, Coimbra, Portugal.

出版信息

Sci Rep. 2024 Jul 3;14(1):15275. doi: 10.1038/s41598-024-65394-6.


DOI:10.1038/s41598-024-65394-6
PMID:38961231
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11222528/
Abstract

Providing adequate counseling on mode of delivery after induction of labor (IOL) is of utmost importance. Various AI algorithms have been developed for this purpose, but rely on maternal-fetal data, not including ultrasound (US) imaging. We used retrospectively collected clinical data from 808 subjects submitted to IOL, totaling 2024 US images, to train AI models to predict vaginal delivery (VD) and cesarean section (CS) outcomes after IOL. The best overall model used only clinical data (F1-score: 0.736; positive predictive value (PPV): 0.734). The imaging models employed fetal head, abdomen and femur US images, showing limited discriminative results. The best model used femur images (F1-score: 0.594; PPV: 0.580). Consequently, we constructed ensemble models to test whether US imaging could enhance the clinical data model. The best ensemble model included clinical data and US femur images (F1-score: 0.689; PPV: 0.693), presenting a false positive and false negative interesting trade-off. The model accurately predicted CS on 4 additional cases, despite misclassifying 20 additional VD, resulting in a 6.0% decrease in average accuracy compared to the clinical data model. Hence, integrating US imaging into the latter model can be a new development in assisting mode of delivery counseling.

摘要

为引产(IOL)后的分娩方式提供充分的咨询至关重要。为此已经开发了各种人工智能算法,但这些算法依赖于不包括超声(US)成像的母婴数据。我们使用从 808 名接受 IOL 的受试者中回顾性收集的临床数据,总共 2024 张 US 图像,来训练 AI 模型以预测 IOL 后的阴道分娩(VD)和剖宫产(CS)结局。整体最佳模型仅使用临床数据(F1 评分:0.736;阳性预测值(PPV):0.734)。成像模型使用胎儿头部、腹部和股骨 US 图像,显示出有限的鉴别结果。使用股骨图像的最佳模型(F1 评分:0.594;PPV:0.580)。因此,我们构建了集成模型来测试 US 成像是否可以增强临床数据模型。最佳的集成模型包括临床数据和股骨 US 图像(F1 评分:0.689;PPV:0.693),呈现出有趣的假阳性和假阴性权衡。该模型在另外 4 个病例中准确预测了 CS,尽管错误地将另外 20 个 VD 归类,与临床数据模型相比,平均准确性降低了 6.0%。因此,将 US 成像集成到后者模型中可能是辅助分娩方式咨询的新发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64e2/11222528/d7e5194495d6/41598_2024_65394_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64e2/11222528/acf15ad9abab/41598_2024_65394_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64e2/11222528/ed7cf5997300/41598_2024_65394_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64e2/11222528/e2b296e98e8e/41598_2024_65394_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64e2/11222528/bb31afde39f6/41598_2024_65394_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64e2/11222528/d7e5194495d6/41598_2024_65394_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64e2/11222528/acf15ad9abab/41598_2024_65394_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64e2/11222528/ed7cf5997300/41598_2024_65394_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64e2/11222528/e2b296e98e8e/41598_2024_65394_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64e2/11222528/bb31afde39f6/41598_2024_65394_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64e2/11222528/d7e5194495d6/41598_2024_65394_Fig5_HTML.jpg

相似文献

[1]
Ensemble learning for fetal ultrasound and maternal-fetal data to predict mode of delivery after labor induction.

Sci Rep. 2024-7-3

[2]
Labor progress determined by ultrasound is different in women requiring cesarean delivery from those who experience a vaginal delivery following induction of labor.

Am J Obstet Gynecol. 2019-5-30

[3]
Maternal and fetal characteristics for predicting risk of Cesarean section following induction of labor: pooled analysis of PROBAAT trials.

Ultrasound Obstet Gynecol. 2022-1

[4]
Comparison of different methods of measuring angle of progression in prediction of labor outcome.

Ultrasound Obstet Gynecol. 2020-3

[5]
Predicting cesarean delivery for failure to progress as an outcome of labor induction in term singleton pregnancy.

Am J Obstet Gynecol. 2021-6

[6]
Maternal cardiovascular function and risk of intrapartum fetal compromise in women undergoing induction of labor: pilot study.

Ultrasound Obstet Gynecol. 2020-8

[7]
Lower uterine segment thickness assessed by transvaginal ultrasound before labor induction: reproducibility analysis and relationship with delivery outcome.

Ultrasound Obstet Gynecol. 2023-3

[8]
Prediction of cesarean delivery in the term nulliparous woman: results from the prospective, multicenter Genesis study.

Am J Obstet Gynecol. 2017-2-16

[9]
Predicting success of labor induction in singleton term pregnancies by combining maternal and ultrasound variables.

J Matern Fetal Neonatal Med. 2016-11

[10]
Descent of fetal head during active pushing: secondary analysis of prospective cohort study investigating ultrasound examination before operative vaginal delivery.

Ultrasound Obstet Gynecol. 2019-10

引用本文的文献

[1]
Does infant birthweight percentile identify mothers at risk of severe morbidity? A Canadian population-based cohort study.

Matern Health Neonatol Perinatol. 2025-7-3

[2]
Artificial intelligence assisted common maternal fetal planes prediction from ultrasound images based on information fusion of customized convolutional neural networks.

Front Med (Lausanne). 2024-10-29

[3]
Artificial Intelligence in Predicting the Mode of Delivery: A Systematic Review.

Cureus. 2024-9-10

本文引用的文献

[1]
Fetal biometry and amniotic fluid volume assessment end-to-end automation using Deep Learning.

Nat Commun. 2023-11-3

[2]
Transfer learning for accurate fetal organ classification from ultrasound images: a potential tool for maternal healthcare providers.

Sci Rep. 2023-10-20

[3]
An artificial intelligence algorithm for automated blastocyst morphometric parameters demonstrates a positive association with implantation potential.

Sci Rep. 2023-9-5

[4]
Multi-centre deep learning for placenta segmentation in obstetric ultrasound with multi-observer and cross-country generalization.

Sci Rep. 2023-2-8

[5]
Prediction of successful labor induction in persons with a low Bishop score using machine learning: Secondary analysis of two randomized controlled trials.

Birth. 2023-3

[6]
Use of artificial intelligence and deep learning in fetal ultrasound imaging.

Ultrasound Obstet Gynecol. 2023-8

[7]
Use of artificial intelligence in obstetrics: not quite ready for prime time.

Am J Obstet Gynecol MFM. 2023-2

[8]
Establishment of a model for predicting the outcome of induced labor in full-term pregnancy based on machine learning algorithm.

Sci Rep. 2022-11-9

[9]
A review on deep-learning algorithms for fetal ultrasound-image analysis.

Med Image Anal. 2023-1

[10]
Deriving a prediction model for emergency cesarean delivery following induction of labor in singleton term pregnancies.

Int J Gynaecol Obstet. 2023-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索