Suppr超能文献

用于乙烯/乙烷和烟道气分离的定向超薄π络合金属有机框架膜

Oriented Ultrathin π-complexation MOF Membrane for Ethylene/Ethane and Flue Gas Separations.

作者信息

Sun Yanwei, Hu Shen, Yan Jiahui, Ji Taotao, Liu Liangliang, Wu Mingming, Guo Xinwen, Liu Yi

机构信息

State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.

Sinopec Nanjing catalyst co., ltd., Nanjing, 210000, China.

出版信息

Angew Chem Int Ed Engl. 2023 Oct 23;62(43):e202311336. doi: 10.1002/anie.202311336. Epub 2023 Sep 15.

Abstract

Rational design and engineering of high-performance molecular sieve membranes towards C H /C H and flue gas separations remain a grand challenge to date. In this study, through combining pore micro-environment engineering with meso-structure manipulation, highly c-oriented sub-100 nm-thick Cu@NH -MIL-125 membrane was successfully prepared. Coordinatively unsaturated Cu ions immobilized in the NH -MIL-125 framework enabled high-affinity π-complexation interactions with C H , resulting in an C H /C H selectivity approaching 13.6, which was 9.4 times higher than that of pristine NH -MIL-125 membrane; moreover, benefiting from π-complexation interactions between CO and Cu(I) sites, our membrane displayed superior CO /N selectivity of 43.2 with CO permeance of 696 GPU, which far surpassed the benchmark of other pure MOF membranes. The above multi-scale structure optimization strategy is anticipated to present opportunities for significantly enhancing the separation performance of diverse molecular sieve membranes.

摘要

迄今为止,针对C₂H₂/C₂H₄和烟道气分离的高性能分子筛膜的合理设计与工程化仍是一项巨大挑战。在本研究中,通过将孔微环境工程与介观结构调控相结合,成功制备了高度c取向的厚度小于100 nm的Cu@NH₂-MIL-125膜。固定在NH₂-MIL-125骨架中的配位不饱和Cu离子能够与C₂H₂形成高亲和力的π络合相互作用,使得C₂H₂/C₂H₄选择性接近13.6,比原始NH₂-MIL-125膜高9.4倍;此外,受益于CO与Cu(I)位点之间的π络合相互作用,我们的膜显示出优异的CO₂/N₂选择性43.2,CO₂渗透率为696 GPU,远远超过其他纯MOF膜的基准。上述多尺度结构优化策略有望为显著提高各种分子筛膜的分离性能提供机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验