Suppr超能文献

使用甲氧基乙醇钙作为钙源的用于骨再生的3D打印混合支架。

3D printed hybrid scaffolds for bone regeneration using calcium methoxyethoxide as a calcium source.

作者信息

Heyraud Agathe, Tallia Francesca, Sory David, Ting Hung-Kai, Tchorzewska Anna, Liu Jingwen, Pilsworth Hannah L, Lee Peter D, Hanna John V, Rankin Sara M, Jones Julian R

机构信息

Department of Materials, Imperial College London, London, United Kingdom.

Faculty of Medicine, Imperial College London, National Heart and Lung Institute, London, United Kingdom.

出版信息

Front Bioeng Biotechnol. 2023 Aug 17;11:1224596. doi: 10.3389/fbioe.2023.1224596. eCollection 2023.

Abstract

Hybrids consist of inorganic and organic co-networks that are indistinguishable above the nanoscale, which can lead to unprecedented combinations of properties, such as high toughness and controlled degradation. We present 3D printed bioactive hybrid scaffolds for bone regeneration, produced by incorporating calcium into our "Bouncy Bioglass", using calcium methoxyethoxide (CME) as the calcium precursor. SiO-CaO/PTHF/PCL-diCOOH hybrid "inks" for additive manufacturing (Direct Ink Writing) were optimised for synergy of mechanical properties and open interconnected pore channels. Adding calcium improved printability. Changing calcium content (5, 10, 20, 30, and 40 mol.%) of the SiO-CaO/PTHF/PCL-diCOOH hybrids affected printability and mechanical properties of the lattice-like scaffolds. Hybrids containing 30 mol.% calcium in the inorganic network (70S30C-CL) printed with 500 µm channels and 100 µm strut size achieved the highest strength (0.90 ± 0.23 MPa) and modulus of toughness (0.22 ± 0.04 MPa). These values were higher than Ca-free SiO/PTHF/PCL-diCOOH hybrids (0.36 ± 0.14 MPa strength and 0.06 ± 0.01 MPa toughness modulus). Over a period of 90 days of immersion in simulated body fluid (SBF), the 70S30C-CL hybrids also kept a stable strain to failure (~30 %) and formed hydroxycarbonate apatite within three days. The extracts released by the 70S30C-CL hybrids in growth medium did not cause cytotoxic effects on human bone marrow stromal cells over 24 h of culture.

摘要

杂化材料由无机和有机共网络组成,在纳米尺度以上无法区分,这可导致前所未有的性能组合,如高韧性和可控降解性。我们展示了用于骨再生的3D打印生物活性杂化支架,其通过将钙掺入我们的“弹性生物玻璃”中制备,使用甲氧基乙醇钙(CME)作为钙前驱体。用于增材制造(直接墨水书写)的SiO-CaO/PTHF/PCL-二羧酸杂化“墨水”针对机械性能和开放互连孔隙通道的协同作用进行了优化。添加钙改善了可打印性。改变SiO-CaO/PTHF/PCL-二羧酸杂化材料中钙的含量(5、10、20、30和40摩尔%)会影响晶格状支架的可打印性和机械性能。在无机网络中含有30摩尔%钙(70S30C-CL)的杂化材料,打印出的通道为500微米,支柱尺寸为100微米,实现了最高强度(0.90±0.23兆帕)和韧性模量(0.22±0.04兆帕)。这些值高于不含钙的SiO/PTHF/PCL-二羧酸杂化材料(强度为0.36±0.14兆帕,韧性模量为0.06±0.01兆帕)。在模拟体液(SBF)中浸泡90天的时间里,70S30C-CL杂化材料还保持了稳定的破坏应变(约30%),并在三天内形成了羟基碳酸磷灰石。70S30C-CL杂化材料在生长培养基中释放的提取物在24小时的培养过程中对人骨髓基质细胞没有产生细胞毒性作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ff3/10476218/d4c80768b8f7/fbioe-11-1224596-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验