Wang Xiaohu, Ren Yongmei, Luo Ze, He Wei, Hong Jun, Huang Yinzhen
School of Intelligent Manufacturing and Mechanical Engineering, Hunan Institute of Technology, Hengyang, China.
School of Electrical and Information Engineering, Hunan Institute of Technology, Hengyang, China.
Front Psychol. 2023 Feb 27;14:1126994. doi: 10.3389/fpsyg.2023.1126994. eCollection 2023.
Automatic electroencephalogram (EEG) emotion recognition is a challenging component of human-computer interaction (HCI). Inspired by the powerful feature learning ability of recently-emerged deep learning techniques, various advanced deep learning models have been employed increasingly to learn high-level feature representations for EEG emotion recognition. This paper aims to provide an up-to-date and comprehensive survey of EEG emotion recognition, especially for various deep learning techniques in this area. We provide the preliminaries and basic knowledge in the literature. We review EEG emotion recognition benchmark data sets briefly. We review deep learning techniques in details, including deep belief networks, convolutional neural networks, and recurrent neural networks. We describe the state-of-the-art applications of deep learning techniques for EEG emotion recognition in detail. We analyze the challenges and opportunities in this field and point out its future directions.
自动脑电图(EEG)情感识别是人机交互(HCI)中一项具有挑战性的组成部分。受近期新兴深度学习技术强大的特征学习能力启发,各种先进的深度学习模型越来越多地被用于学习用于EEG情感识别的高级特征表示。本文旨在对EEG情感识别,特别是该领域的各种深度学习技术进行最新的全面综述。我们提供文献中的预备知识和基础知识。我们简要回顾EEG情感识别基准数据集。我们详细回顾深度学习技术,包括深度信念网络、卷积神经网络和循环神经网络。我们详细描述深度学习技术在EEG情感识别中的最新应用。我们分析该领域的挑战和机遇,并指出其未来方向。