American University of Nigeria, Nigeria.
American University of Nigeria, Nigeria.
Artif Intell Med. 2023 Sep;143:102617. doi: 10.1016/j.artmed.2023.102617. Epub 2023 Jun 26.
Diabetic Retinopathy (DR) is the most popular debilitating impairment of diabetes and it progresses symptom-free until a sudden loss of vision occurs. Understanding the progression of DR is a pressing issue in clinical research and practice. In this systematic review of articles on Machine Learning (ML) based risk prediction models for DR progression, ever since the use of Artificial Intelligence (AI) for DR detection, there have been more cross-sectional studies with different algorithms of use of AI, there haven't been many longitudinal studies for the AI based risk prediction models. This paper proposes a novel review to fill in the gaps identified in current reviews and facilitate other researchers with current research solutions for developing AI-based risk prediction models for DR progression and closely related problems; synthesize the current results from these studies and identify research challenges, limitations and gaps to inform the selection of machine learning techniques and predictors to build novel prediction models. Additionally, this paper suggested six (6) deep AI-related technical and critical discussion of the adopted strategies and approaches. The Systematic Literature Review (SLR) methodology was employed to gather relevant studies. We searched IEEE Xplore, PubMed, Springer Link, Google Scholar, and Science Direct electronic databases for papers published from January 2017 to 30th April 2023. Thirteen (13) studies were chosen on the basis of their relevance to the review questions and satisfying the selection criteria. However, findings from the literature review exposed some critical research gaps that need to be addressed in future research to improve on the performance of risk prediction models for DR progression.
糖尿病视网膜病变(DR)是糖尿病最常见的致残性损害,它在出现视力突然丧失之前无症状进展。了解 DR 的进展情况是临床研究和实践中的一个紧迫问题。在对基于机器学习(ML)的 DR 进展风险预测模型的文章进行的系统综述中,自人工智能(AI)用于 DR 检测以来,已有更多使用不同 AI 算法的横断面研究,但基于 AI 的风险预测模型的纵向研究却很少。本文提出了一种新的综述方法,以填补当前综述中发现的空白,并为其他研究人员提供当前的研究解决方案,用于开发用于 DR 进展和密切相关问题的基于 AI 的风险预测模型;综合这些研究的当前结果,并确定研究挑战、局限性和差距,以告知选择机器学习技术和预测因子来构建新的预测模型。此外,本文还提出了六个(6)与深度学习相关的技术和关键讨论,包括所采用的策略和方法。采用系统文献综述(SLR)方法来收集相关研究。我们在 IEEE Xplore、PubMed、Springer Link、Google Scholar 和 Science Direct 电子数据库中搜索了 2017 年 1 月至 2023 年 4 月 30 日期间发表的论文。根据与综述问题的相关性和满足选择标准,选择了十三(13)项研究。然而,文献综述的结果暴露了一些需要在未来研究中解决的关键研究差距,以提高 DR 进展风险预测模型的性能。