Nur Aqsha, Tjandra Sydney, Yumnanisha Defin A, Keane Arnold, Bachtiar Adang
Faculty of Public Health, Universitas Indonesia, Depok, Indonesia.
Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom.
Narra J. 2025 Apr;5(1):e2116. doi: 10.52225/narra.v5i1.2116. Epub 2025 Mar 19.
Macrovascular complications, including stroke, cardiovascular disease (CVD), and peripheral vascular disease (PVD), significantly contribute to morbidity and mortality in individuals with type 2 diabetes mellitus (T2DM). The aim of this study was to evaluate the performance of artificial intelligence (AI) models in predicting these complications, emphasizing applicability in diverse healthcare settings. Following PRISMA guidelines, a systematic search of six databases was conducted, yielding 46 eligible studies with 184 AI models. Predictive performance was assessed using the area under the receiver operating characteristic curve (AUROC). Subgroup analyses examined model performance by outcome type, predictor data (lab-only, non-lab, mixed), and algorithm type. Heterogeneity was evaluated using statistics, and sensitivity analyses addressed outliers and study biases. The pooled AUROC for all AI models was 0.753 (95%CI: 0.740-0.766; = 99-99%)· Models predicting PVD achieved the highest AUROC (0.794), followed by cerebrovascular diseases (0.770) and CVD (0.741). Gradient-boosting algorithms outperformed others (AUROC: 0.789). Models with lab-only predictors had superior performance (AUROC: 0.837) compared to mixed (0.759) and non-lab predictors (0.714). External validations reported reduced AUROC (0.725), underscoring limitations in generalizability. AI models show moderate predictive accuracy for T2DM macrovascular complications, with laboratory-based predictors being key to performance. However, the limited external validation and reliance on high-resource data restrict implementation in low-resource settings. Future efforts should focus on non-lab predictors, external validation, and context-appropriate AI solutions to enhance global applicability.
大血管并发症,包括中风、心血管疾病(CVD)和外周血管疾病(PVD),是导致2型糖尿病(T2DM)患者发病和死亡的重要因素。本研究旨在评估人工智能(AI)模型预测这些并发症的性能,重点关注其在不同医疗环境中的适用性。按照PRISMA指南,对六个数据库进行了系统检索,得到46项符合条件的研究,共184个人工智能模型。使用受试者工作特征曲线下面积(AUROC)评估预测性能。亚组分析按结局类型、预测变量数据(仅实验室数据、非实验室数据、混合数据)和算法类型检查模型性能。使用 统计量评估异质性,并通过敏感性分析处理异常值和研究偏差。所有人工智能模型的合并AUROC为0.753(95%CI:0.740 - 0.766; = 99 - 99%)。预测PVD的模型AUROC最高(0.794),其次是脑血管疾病(0.770)和CVD(0.741)。梯度提升算法的表现优于其他算法(AUROC:0.789)。仅使用实验室预测变量的模型性能优于混合数据模型(AUROC:0.759)和非实验室预测变量模型(0.714)。外部验证报告的AUROC有所降低(0.725),这凸显了模型在推广性方面的局限性。人工智能模型对T2DM大血管并发症显示出中等预测准确性,基于实验室的预测变量是性能的关键。然而,有限的外部验证和对高资源数据的依赖限制了其在低资源环境中的应用。未来的工作应集中在非实验室预测变量、外部验证以及适合具体情况的人工智能解决方案上,以提高其全球适用性。