文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

机器人辅助微创手术的三维碰撞避免方法

Three-Dimensional Collision Avoidance Method for Robot-Assisted Minimally Invasive Surgery.

作者信息

Li Ling, Li Xiaojian, Ouyang Bo, Mo Hangjie, Ren Hongliang, Yang Shanlin

机构信息

School of Management, Hefei University of Technology, Hefei, China.

Key Laboratory of Process Optimization and Intelligent Decision-Making (Ministry of Education), Hefei University of Technology, Hefei, China.

出版信息

Cyborg Bionic Syst. 2023 Aug 30;4:0042. doi: 10.34133/cbsystems.0042. eCollection 2023.


DOI:10.34133/cbsystems.0042
PMID:37675200
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10479965/
Abstract

In the robot-assisted minimally invasive surgery, if a collision occurs, the robot system program could be damaged, and normal tissues could be injured. To avoid collisions during surgery, a 3-dimensional collision avoidance method is proposed in this paper. The proposed method is predicated on the design of 3 strategic vectors: the collision-with-instrument-avoidance (CI) vector, the collision-with-tissues-avoidance (CT) vector, and the constrained-control (CC) vector. The CI vector demarcates 3 specific directions to forestall collision among the surgical instruments. The CT vector, on the other hand, comprises 2 components tailored to prevent inadvertent contact between the robot-controlled instrument and nontarget tissues. Meanwhile, the CC vector is introduced to guide the endpoint of the robot-controlled instrument toward the desired position, ensuring precision in its movements, in alignment with the surgical goals. Simulation results verify the proposed collision avoidance method for robot-assisted minimally invasive surgery. The code and data are available at https://github.com/cynerelee/collision-avoidance.

摘要

在机器人辅助微创手术中,如果发生碰撞,机器人系统程序可能会受损,正常组织也可能会受到损伤。为避免手术过程中发生碰撞,本文提出了一种三维碰撞避免方法。该方法基于三个策略向量的设计:器械碰撞避免(CI)向量、组织碰撞避免(CT)向量和约束控制(CC)向量。CI向量划定了三个特定方向,以防止手术器械之间发生碰撞。另一方面,CT向量由两个组件组成,旨在防止机器人控制的器械与非目标组织发生意外接触。同时,引入CC向量以将机器人控制的器械端点引导至期望位置,确保其运动精度与手术目标一致。仿真结果验证了所提出的机器人辅助微创手术碰撞避免方法。代码和数据可在https://github.com/cynerelee/collision-avoidance获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f351/10479965/fdca14078340/cbsystems.0042.fig.011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f351/10479965/b7bc1ef30cf4/cbsystems.0042.fig.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f351/10479965/d456b4c54473/cbsystems.0042.fig.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f351/10479965/0c95319b3c18/cbsystems.0042.fig.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f351/10479965/3873c622a3c1/cbsystems.0042.fig.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f351/10479965/cda73ca3e534/cbsystems.0042.fig.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f351/10479965/91583077c555/cbsystems.0042.fig.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f351/10479965/804152068949/cbsystems.0042.fig.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f351/10479965/415ce59c3fb5/cbsystems.0042.fig.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f351/10479965/00fa47e2eddf/cbsystems.0042.fig.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f351/10479965/89f3f073b683/cbsystems.0042.fig.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f351/10479965/fdca14078340/cbsystems.0042.fig.011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f351/10479965/b7bc1ef30cf4/cbsystems.0042.fig.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f351/10479965/d456b4c54473/cbsystems.0042.fig.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f351/10479965/0c95319b3c18/cbsystems.0042.fig.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f351/10479965/3873c622a3c1/cbsystems.0042.fig.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f351/10479965/cda73ca3e534/cbsystems.0042.fig.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f351/10479965/91583077c555/cbsystems.0042.fig.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f351/10479965/804152068949/cbsystems.0042.fig.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f351/10479965/415ce59c3fb5/cbsystems.0042.fig.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f351/10479965/00fa47e2eddf/cbsystems.0042.fig.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f351/10479965/89f3f073b683/cbsystems.0042.fig.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f351/10479965/fdca14078340/cbsystems.0042.fig.011.jpg

相似文献

[1]
Three-Dimensional Collision Avoidance Method for Robot-Assisted Minimally Invasive Surgery.

Cyborg Bionic Syst. 2023-8-30

[2]
Endoscopic vision-based tracking of multiple surgical instruments during robot-assisted surgery.

Artif Organs. 2012-10-9

[3]
Multi-robot collision avoidance method in sweet potato fields.

Front Plant Sci. 2024-9-10

[4]
Robot Imitation Learning of Social Gestures with Self-Collision Avoidance Using a 3D Sensor.

Sensors (Basel). 2018-7-20

[5]
Coordinating Obstacle Avoidance of a Redundant Dual-Arm Nursing-Care Robot.

Bioengineering (Basel). 2024-5-29

[6]
A switching formation strategy for obstacle avoidance of a multi-robot system based on robot priority model.

ISA Trans. 2014-12-10

[7]
Reactive Self-Collision Avoidance for a Differentially Driven Mobile Manipulator.

Sensors (Basel). 2021-1-28

[8]
Collision avoidance analysis of human-robot physical interaction based on null-space impedance control of a dynamic reference arm plane.

Med Biol Eng Comput. 2023-8

[9]
An Automated Skill Assessment Framework Based on Visual Motion Signals and a Deep Neural Network in Robot-Assisted Minimally Invasive Surgery.

Sensors (Basel). 2023-5-5

[10]
Non-Communication Decentralized Multi-Robot Collision Avoidance in Grid Map Workspace with Double Deep Q-Network.

Sensors (Basel). 2021-1-27

引用本文的文献

[1]
Standard operating procedures and learning curve analysis for surgical assistants in robot-assisted distal pancreatectomy.

J Robot Surg. 2025-7-12

[2]
Triangular Wave tACS Improves Working Memory Performance by Enhancing Brain Activity in the Early Stage of Encoding.

Neurosci Bull. 2025-5-23

[3]
Hollow Mesoporous Carbon Nanospheres Derived from Metal-Organic Frameworks for Efficient Sono-immunotherapy against Pancreatic Cancer.

Cyborg Bionic Syst. 2025-5-9

[4]
Efficient control of spider-like medical robots with capsule neural networks and modified spring search algorithm.

Sci Rep. 2025-4-22

[5]
Amplitude of Intracranial Induced Electric Fields Does Not Linearly Decrease with Age: A Computational Study of Anatomical Effects in Adults.

Biosensors (Basel). 2025-3-13

[6]
Functional Alignment Achieved a More Balanced Knee After Robotic Arm-Assisted Total Knee Arthroplasty than Modified Kinematic Alignment.

J Clin Med. 2025-1-26

[7]
Building machines that learn and think with people.

Nat Hum Behav. 2024-10

[8]
Quantitative softness and texture bimodal haptic sensors for robotic clinical feature identification and intelligent picking.

Sci Adv. 2024-7-26

[9]
Review of robotic systems for thoracoabdominal puncture interventional surgery.

APL Bioeng. 2024-4-1

本文引用的文献

[1]
Robotic Surgery in Gastrointestinal Surgery.

Cyborg Bionic Syst. 2020-12-4

[2]
Medical robotics-Regulatory, ethical, and legal considerations for increasing levels of autonomy.

Sci Robot. 2017-3-15

[3]
An extended algorithm for autonomous grasping of soft tissues during robotic surgery.

Int J Med Robot. 2020-10

[4]
National trends and disparities of minimally invasive surgery for localized renal cancer, 2010 to 2015.

Urol Oncol. 2019-1-8

[5]
Comparing a Mechanical Analogue With the Da Vinci User Interface: Suturing at Challenging Angles.

IEEE Robot Autom Lett. 2016-7

[6]
Live Tracking and Dense Reconstruction for Handheld Monocular Endoscopy.

IEEE Trans Med Imaging. 2018-7-13

[7]
Review of emerging surgical robotic technology.

Surg Endosc. 2018-2-13

[8]
Development and validation of 3D printed virtual models for robot-assisted radical prostatectomy and partial nephrectomy: urologists' and patients' perception.

World J Urol. 2017-11-10

[9]
Transanal Minimally Invasive Surgery for Local Excision of Benign and Malignant Rectal Neoplasia: Outcomes From 200 Consecutive Cases With Midterm Follow Up.

Ann Surg. 2018-5

[10]
Adaptive Neural Network Control of an Uncertain Robot With Full-State Constraints.

IEEE Trans Cybern. 2015-4-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索