文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

源自金属有机框架的中空介孔碳纳米球用于胰腺癌的高效声动力免疫治疗

Hollow Mesoporous Carbon Nanospheres Derived from Metal-Organic Frameworks for Efficient Sono-immunotherapy against Pancreatic Cancer.

作者信息

Chen Libin, Li Haiwei, Liu Jing, Wang Yunzhong, Zhang Shengmin

机构信息

Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang 110042, China.

Department of Ultrasound Medicine, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China.

出版信息

Cyborg Bionic Syst. 2025 May 9;6:0247. doi: 10.34133/cbsystems.0247. eCollection 2025.


DOI:10.34133/cbsystems.0247
PMID:40352815
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12062583/
Abstract

Sono-immunotherapy is expected to effectively enhance treatment efficacy and reduce mortality in patients with pancreatic cancer. Hence, efficient applicable sono-immunotherapy systems are urgently needed for the treatment of this condition. In this study, hollow mesoporous carbon (HMC) nanoparticles were prepared using the sacrificial template method. These nanoparticles had a porphyrin-like structure and could generate singlet oxygen more efficiently than commercial TiO. Cellular assays showed that HMC killed tumor cells in the presence of ultrasonication, primarily by inducing apoptosis. HMC could also accelerate the release of immune factors by tumor cells, thereby activating dendritic cells and enhancing the efficacy of immunotherapy. Experiments in tumor-bearing mice and in situ pancreatic cancer tests showed that HMC, in combination with the small-molecule inhibitors of programmed cell death ligand 1, could reduce tumor growth via the generation of reactive oxygen species following ultrasonication. HMC could enhance the efficacy of immunotherapy by disrupting the immunosuppressive tumor microenvironment and promoting the accumulation of immune cells. Accordingly, in vivo sono-immunotherapy was achieved, and the growth of transplanted tumors and in situ tumors could be reduced. In conclusion, this study proposes a novel method for the preparation of HMC nanoparticles and demonstrates their potential in tumor treatment. Additionally, owing to their unique structure, these HMC nanoparticles could be used for different combination therapies tailored based on specific clinical requirements.

摘要

声动力免疫疗法有望有效提高胰腺癌患者的治疗效果并降低死亡率。因此,迫切需要高效适用的声动力免疫治疗系统来治疗这种疾病。在本研究中,采用牺牲模板法制备了中空介孔碳(HMC)纳米颗粒。这些纳米颗粒具有类卟啉结构,比市售的TiO更有效地产生单线态氧。细胞实验表明,HMC在超声作用下杀死肿瘤细胞,主要是通过诱导细胞凋亡。HMC还可以加速肿瘤细胞释放免疫因子,从而激活树突状细胞并增强免疫治疗效果。在荷瘤小鼠体内和原位胰腺癌实验表明,HMC与程序性细胞死亡配体1的小分子抑制剂联合使用,可以通过超声作用后产生活性氧来减少肿瘤生长。HMC可以通过破坏免疫抑制性肿瘤微环境和促进免疫细胞的积累来增强免疫治疗效果。因此,实现了体内声动力免疫治疗,并可减少移植瘤和原位瘤的生长。总之,本研究提出了一种制备HMC纳米颗粒的新方法,并证明了它们在肿瘤治疗中的潜力。此外,由于其独特的结构,这些HMC纳米颗粒可用于根据特定临床需求定制的不同联合治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/12062583/d8e375c72c24/cbsystems.0247.fig.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/12062583/db518a8846bb/cbsystems.0247.fig.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/12062583/00febc406b6e/cbsystems.0247.fig.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/12062583/93d88ef1e444/cbsystems.0247.fig.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/12062583/ac60f216262d/cbsystems.0247.fig.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/12062583/36de9dd9f32f/cbsystems.0247.fig.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/12062583/9e03cb26cc3b/cbsystems.0247.fig.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/12062583/568bfd54266c/cbsystems.0247.fig.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/12062583/a9643b2da76b/cbsystems.0247.fig.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/12062583/d8e375c72c24/cbsystems.0247.fig.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/12062583/db518a8846bb/cbsystems.0247.fig.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/12062583/00febc406b6e/cbsystems.0247.fig.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/12062583/93d88ef1e444/cbsystems.0247.fig.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/12062583/ac60f216262d/cbsystems.0247.fig.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/12062583/36de9dd9f32f/cbsystems.0247.fig.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/12062583/9e03cb26cc3b/cbsystems.0247.fig.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/12062583/568bfd54266c/cbsystems.0247.fig.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/12062583/a9643b2da76b/cbsystems.0247.fig.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4193/12062583/d8e375c72c24/cbsystems.0247.fig.009.jpg

相似文献

[1]
Hollow Mesoporous Carbon Nanospheres Derived from Metal-Organic Frameworks for Efficient Sono-immunotherapy against Pancreatic Cancer.

Cyborg Bionic Syst. 2025-5-9

[2]
Hollow Cu2MoS4 nanoparticles loaded with immune checkpoint inhibitors reshape the tumor microenvironment to enhance immunotherapy for pancreatic cancer.

Acta Biomater. 2024-1-1

[3]
Functionalized biomimetic nanoparticles combining programmed death-1/programmed death-ligand 1 blockade with photothermal ablation for enhanced colorectal cancer immunotherapy.

Acta Biomater. 2023-2

[4]
Sono-Activatable Semiconducting Polymer Nanoreshapers Multiply Remodel Tumor Microenvironment for Potent Immunotherapy of Orthotopic Pancreatic Cancer.

Adv Sci (Weinh). 2023-12

[5]
Ultrasound-Activated Precise Sono-Immunotherapy for Breast Cancer with Reduced Pulmonary Fibrosis.

Adv Sci (Weinh). 2025-2

[6]
Triple stimuli-responsive ZnO quantum dots-conjugated hollow mesoporous carbon nanoplatform for NIR-induced dual model antitumor therapy.

J Colloid Interface Sci. 2019-9-30

[7]
A metal-organic framework functionalized CaO-based cascade nanoreactor induces synergistic cuproptosis/ferroptosis and Ca overload-mediated mitochondrial damage for enhanced sono-chemodynamic immunotherapy.

Acta Biomater. 2025-1-24

[8]
Augmenting Immunogenic Cell Death and Alleviating Myeloid-Derived Suppressor Cells by Sono-Activatable Semiconducting Polymer Nanopartners for Immunotherapy.

Adv Mater. 2023-8

[9]
Copper-based hollow mesoporous nanogenerator with reactive oxygen species and reactive nitrogen species storm generation for self-augmented immunogenic cell death-mediated triple-negative breast cancer immunotherapy.

J Colloid Interface Sci. 2025-6-15

[10]
Activatable Semiconducting Polymer Pro-nanomodulators for Deep-Tissue Sono-immunotherapy of Orthotopic Pancreatic Cancer.

Angew Chem Int Ed Engl. 2023-7-24

本文引用的文献

[1]
Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States, 2019.

CA Cancer J Clin. 2024

[2]
The emergence of cancer sono-immunotherapy.

Trends Immunol. 2024-7

[3]
Sono-Triggered Cascade Lactate Depletion by Semiconducting Polymer Nanoreactors for Cuproptosis-Immunotherapy of Pancreatic Cancer.

Angew Chem Int Ed Engl. 2024-7-22

[4]
Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.

CA Cancer J Clin. 2024

[5]
Three-Dimensional Collision Avoidance Method for Robot-Assisted Minimally Invasive Surgery.

Cyborg Bionic Syst. 2023-8-30

[6]
Organic Sonodynamic Materials for Combination Cancer Immunotherapy.

Adv Mater. 2023-12

[7]
Carbon-Based Stimuli-Responsive Nanomaterials: Classification and Application.

Cyborg Bionic Syst. 2023-4-11

[8]
Harnessing Nanomaterials for Cancer Sonodynamic Immunotherapy.

Adv Mater. 2023-8

[9]
MOF derived core-shell CuO/C with temperature-controlled oxygen-vacancy for real time analysis of glucose.

J Nanobiotechnology. 2022-12-1

[10]
Precision cancer sono-immunotherapy using deep-tissue activatable semiconducting polymer immunomodulatory nanoparticles.

Nat Commun. 2022-7-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索