Suppr超能文献

计算机辅助药物发现与设计:最新进展与未来展望。

Computer-Aided Drug Discovery and Design: Recent Advances and Future Prospects.

机构信息

Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata (UNLP), La Plata, Argentina.

Argentinean National Council of Scientific and Technical Research (CONICET), La Plata, Argentina.

出版信息

Methods Mol Biol. 2024;2714:1-20. doi: 10.1007/978-1-0716-3441-7_1.

Abstract

Computer-aided drug discovery and design involve the use of information technologies to identify and develop, on a rational ground, chemical compounds that align a set of desired physicochemical and biological properties. In its most common form, it involves the identification and/or modification of an active scaffold (or the combination of known active scaffolds), although de novo drug design from scratch is also possible. Traditionally, the drug discovery and design processes have focused on the molecular determinants of the interactions between drug candidates and their known or intended pharmacological target(s). Nevertheless, in modern times, drug discovery and design are conceived as a particularly complex multiparameter optimization task, due to the complicated, often conflicting, property requirements.This chapter provides an updated overview of in silico approaches for identifying active scaffolds and guiding the subsequent optimization process. Recent groundbreaking advances in the field have also analyzed the integration of state-of-the-art machine learning approaches in every step of the drug discovery process (from prediction of target structure to customized molecular docking scoring functions), integration of multilevel omics data, and the use of a diversity of computational approaches to assist target validation and assess plausible binding pockets.

摘要

计算机辅助药物发现和设计涉及使用信息技术来识别和开发具有一组所需理化性质和生物性质的化合物。在其最常见的形式中,它涉及识别和/或修饰活性支架(或组合已知的活性支架),尽管从头开始进行全新的药物设计也是可能的。传统上,药物发现和设计过程主要集中在候选药物与其已知或预期的药理学靶标之间相互作用的分子决定因素上。然而,在现代,由于复杂、常常相互冲突的特性要求,药物发现和设计被认为是一项特别复杂的多参数优化任务。本章提供了一种用于识别活性支架和指导后续优化过程的计算方法的最新概述。该领域的最新突破性进展还分析了将最先进的机器学习方法集成到药物发现过程的每一步(从预测靶标结构到定制分子对接评分函数)、多层次组学数据的整合,以及使用各种计算方法来辅助靶标验证和评估可能的结合口袋。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验