文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

网络药理学驱动的可持续性:人工智能与多组学协同助力中药药物发现

Network Pharmacology-Driven Sustainability: AI and Multi-Omics Synergy for Drug Discovery in Traditional Chinese Medicine.

作者信息

Yang Lifang, Wang Hanye, Zhu Zhiyao, Yang Ye, Xiong Yin, Cui Xiuming, Liu Yuan

机构信息

Center for Translational Research in Clinical Medicine, School of Medicine, Kunming University of Science and Technology, Kunming 650500, China.

Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.

出版信息

Pharmaceuticals (Basel). 2025 Jul 21;18(7):1074. doi: 10.3390/ph18071074.


DOI:10.3390/ph18071074
PMID:40732361
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12298991/
Abstract

Traditional Chinese medicine (TCM), a holistic medical system rooted in dialectical theories and natural product-based therapies, has served as a cornerstone of healthcare systems for millennia. While its empirical efficacy is widely recognized, the polypharmacological mechanisms stemming from its multi-component nature remain poorly characterized. The conventional trial-and-error approaches for bioactive compound screening from herbs raise sustainability concerns, including excessive resource consumption and suboptimal temporal efficiency. The integration of artificial intelligence (AI) and multi-omics technologies with network pharmacology (NP) has emerged as a transformative methodology aligned with TCM's inherent "multi-component, multi-target, multi-pathway" therapeutic characteristics. This convergent review provides a computational framework to decode complex bioactive compound-target-pathway networks through two synergistic strategies, (i) NP-driven dynamics interaction network modeling and (ii) AI-enhanced multi-omics data mining, thereby accelerating drug discovery and reducing experimental costs. Our analysis of 7288 publications systematically maps NP-AI-omics integration workflows for natural product screening. The proposed framework enables sustainable drug discovery through data-driven compound prioritization, systematic repurposing of herbal formulations via mechanism-based validation, and the development of evidence-based novel TCM prescriptions. This paradigm bridges empirical TCM knowledge with mechanism-driven precision medicine, offering a theoretical basis for reconciling traditional medicine with modern pharmaceutical innovation.

摘要

传统中医(TCM)是一种基于辩证理论和天然产物疗法的整体医学体系,数千年来一直是医疗保健系统的基石。虽然其经验疗效已得到广泛认可,但其多成分性质所产生的多药药理机制仍未得到充分表征。从草药中筛选生物活性化合物的传统试错方法引发了可持续性问题,包括资源消耗过多和时间效率欠佳。人工智能(AI)和多组学技术与网络药理学(NP)的整合已成为一种变革性方法,与中医固有的“多成分、多靶点、多途径”治疗特点相一致。这篇综述性文章提供了一个计算框架,通过两种协同策略来解码复杂的生物活性化合物-靶点-途径网络:(i)NP驱动的动力学相互作用网络建模和(ii)AI增强的多组学数据挖掘,从而加速药物发现并降低实验成本。我们对7288篇出版物的分析系统地绘制了用于天然产物筛选的NP-AI-组学整合工作流程。所提出的框架通过数据驱动的化合物优先级排序、基于机制验证的草药配方系统重新利用以及基于证据的新型中药方剂开发,实现可持续的药物发现。这种范式将中医的经验知识与机制驱动的精准医学联系起来,为传统医学与现代药物创新的协调提供了理论基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c8f/12298991/85a263ec42f7/pharmaceuticals-18-01074-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c8f/12298991/4fb8df86de25/pharmaceuticals-18-01074-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c8f/12298991/0cc1328e004c/pharmaceuticals-18-01074-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c8f/12298991/a0bdd2c1ed7d/pharmaceuticals-18-01074-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c8f/12298991/85a263ec42f7/pharmaceuticals-18-01074-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c8f/12298991/4fb8df86de25/pharmaceuticals-18-01074-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c8f/12298991/0cc1328e004c/pharmaceuticals-18-01074-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c8f/12298991/a0bdd2c1ed7d/pharmaceuticals-18-01074-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c8f/12298991/85a263ec42f7/pharmaceuticals-18-01074-g004.jpg

相似文献

[1]
Network Pharmacology-Driven Sustainability: AI and Multi-Omics Synergy for Drug Discovery in Traditional Chinese Medicine.

Pharmaceuticals (Basel). 2025-7-21

[2]
From traditional medicine to modern medicine: the importance of TCM regulatory science (TCMRS) as an emerging discipline.

Chin Med. 2025-6-26

[3]
Computer especially AI-assisted drug virtual screening and design in traditional Chinese medicine.

Phytomedicine. 2022-12

[4]
Research progress on the regulation of interstitial cell of Cajal autophagy and apoptosis crosstalk by traditional Chinese medicine in gastrointestinal motility disorders.

J Ethnopharmacol. 2025-6-11

[5]
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation.

Acc Chem Res. 2025-6-17

[6]
The dawn of a new era: can machine learning and large language models reshape QSP modeling?

J Pharmacokinet Pharmacodyn. 2025-6-16

[7]
Integrating network pharmacology and experimental validation to advance psoriasis treatment: Multi-target mechanistic elucidation of medicinal herbs and natural compounds.

Autoimmun Rev. 2025-7-31

[8]
Multi-omics based and AI-driven drug repositioning for epigenetic therapy in female malignancies.

J Transl Med. 2025-7-25

[9]
Elucidating the Mechanism of Xiaoqinglong Decoction in Chronic Urticaria Treatment: An Integrated Approach of Network Pharmacology, Bioinformatics Analysis, Molecular Docking, and Molecular Dynamics Simulations.

Curr Comput Aided Drug Des. 2025-7-16

[10]
The Use of AI for Phenotype-Genotype Mapping.

Methods Mol Biol. 2025

本文引用的文献

[1]
Network pharmacology and single-cell transcriptomic analysis with molecular docking to elucidate the potential compounds and targets of Sieb.et Zucc. for hepatocellular carcinoma.

ILIVER. 2024-8-22

[2]
Canthaxanthin downregulates EGFR in NSCLC: network pharmacology, molecular docking, dynamics simulations, ADMET, and in-vitro analysis.

Mol Divers. 2025-6-14

[3]
AlphaFold3: An Overview of Applications and Performance Insights.

Int J Mol Sci. 2025-4-13

[4]
Exploring the Therapeutic Mechanism of Jianpi Zhidong Decoction on Tourette Syndrome Based on Proteomics and Network Pharmacology.

Drug Des Devel Ther. 2025-4-23

[5]
Traditional Chinese medicine in the prevention of diabetes mellitus and cardiovascular complications: mechanisms and therapeutic approaches.

Front Pharmacol. 2025-4-11

[6]
Machine learning-assisted analysis of serum metabolomics and network pharmacology reveals the effective compound from herbal formula against alcoholic liver injury.

Chin Med. 2025-4-11

[7]
Machine Learning-Enhanced Network Pharmacology in Traditional Chinese Medicine: Mechanistic Insights Into Chai Hu Gui Zhi Tang for Allergic Rhinitis.

Chem Biodivers. 2025-4-10

[8]
Integration of network pharmacology and experimental validation to explore the pharmacological mechanism of andrographolide against asthma.

Bioresour Bioprocess. 2025-4-8

[9]
Study on the Mechanism of Galangin on Hyperuricemic Nephropathy Based on Metabolomics and Network Pharmacology.

Mol Nutr Food Res. 2025-5

[10]
Yi-qi-yang-yin decoction ameliorates diabetic retinopathy: New and comprehensive evidence from network pharmacology, machine learning, molecular docking and molecular biology experiment.

J Pharm Biomed Anal. 2025-8-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索