Yang Lifang, Wang Hanye, Zhu Zhiyao, Yang Ye, Xiong Yin, Cui Xiuming, Liu Yuan
Center for Translational Research in Clinical Medicine, School of Medicine, Kunming University of Science and Technology, Kunming 650500, China.
Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
Pharmaceuticals (Basel). 2025 Jul 21;18(7):1074. doi: 10.3390/ph18071074.
Traditional Chinese medicine (TCM), a holistic medical system rooted in dialectical theories and natural product-based therapies, has served as a cornerstone of healthcare systems for millennia. While its empirical efficacy is widely recognized, the polypharmacological mechanisms stemming from its multi-component nature remain poorly characterized. The conventional trial-and-error approaches for bioactive compound screening from herbs raise sustainability concerns, including excessive resource consumption and suboptimal temporal efficiency. The integration of artificial intelligence (AI) and multi-omics technologies with network pharmacology (NP) has emerged as a transformative methodology aligned with TCM's inherent "multi-component, multi-target, multi-pathway" therapeutic characteristics. This convergent review provides a computational framework to decode complex bioactive compound-target-pathway networks through two synergistic strategies, (i) NP-driven dynamics interaction network modeling and (ii) AI-enhanced multi-omics data mining, thereby accelerating drug discovery and reducing experimental costs. Our analysis of 7288 publications systematically maps NP-AI-omics integration workflows for natural product screening. The proposed framework enables sustainable drug discovery through data-driven compound prioritization, systematic repurposing of herbal formulations via mechanism-based validation, and the development of evidence-based novel TCM prescriptions. This paradigm bridges empirical TCM knowledge with mechanism-driven precision medicine, offering a theoretical basis for reconciling traditional medicine with modern pharmaceutical innovation.
传统中医(TCM)是一种基于辩证理论和天然产物疗法的整体医学体系,数千年来一直是医疗保健系统的基石。虽然其经验疗效已得到广泛认可,但其多成分性质所产生的多药药理机制仍未得到充分表征。从草药中筛选生物活性化合物的传统试错方法引发了可持续性问题,包括资源消耗过多和时间效率欠佳。人工智能(AI)和多组学技术与网络药理学(NP)的整合已成为一种变革性方法,与中医固有的“多成分、多靶点、多途径”治疗特点相一致。这篇综述性文章提供了一个计算框架,通过两种协同策略来解码复杂的生物活性化合物-靶点-途径网络:(i)NP驱动的动力学相互作用网络建模和(ii)AI增强的多组学数据挖掘,从而加速药物发现并降低实验成本。我们对7288篇出版物的分析系统地绘制了用于天然产物筛选的NP-AI-组学整合工作流程。所提出的框架通过数据驱动的化合物优先级排序、基于机制验证的草药配方系统重新利用以及基于证据的新型中药方剂开发,实现可持续的药物发现。这种范式将中医的经验知识与机制驱动的精准医学联系起来,为传统医学与现代药物创新的协调提供了理论基础。
Pharmaceuticals (Basel). 2025-7-21
Acc Chem Res. 2025-6-17
J Pharmacokinet Pharmacodyn. 2025-6-16
Methods Mol Biol. 2025
Int J Mol Sci. 2025-4-13