Suppr超能文献

使用深度学习辅助评估斑马鱼心脏参数,发现矢车菊素氯化物作为一种新型 Keap1 抑制剂对抗阿霉素诱导的心脏毒性。

Use of Deep-Learning Assisted Assessment of Cardiac Parameters in Zebrafish to Discover Cyanidin Chloride as a Novel Keap1 Inhibitor Against Doxorubicin-Induced Cardiotoxicity.

机构信息

College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, 310058, China.

Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, 291 Fucheng Road, Qiantang District, Hangzhou, 310020, China.

出版信息

Adv Sci (Weinh). 2023 Oct;10(30):e2301136. doi: 10.1002/advs.202301136. Epub 2023 Sep 7.

Abstract

Doxorubicin-induced cardiomyopathy (DIC) brings tough clinical challenges as well as continued demand in developing agents for adjuvant cardioprotective therapies. Here, a zebrafish phenotypic screening with deep-learning assisted multiplex cardiac functional analysis using motion videos of larval hearts is established. Through training the model on a dataset of 2125 labeled ventricular images, ZVSegNet and HRNet exhibit superior performance over previous methods. As a result of high-content phenotypic screening, cyanidin chloride (CyCl) is identified as a potent suppressor of DIC. CyCl effectively rescues cardiac cell death and improves heart function in both in vitro and in vivo models of Doxorubicin (Dox) exposure. CyCl shows strong inhibitory effects on lipid peroxidation and mitochondrial damage and prevents ferroptosis and apoptosis-related cell death. Molecular docking and thermal shift assay further suggest a direct binding between CyCl and Keap1, which may compete for the Keap1-Nrf2 interaction, promote nuclear accumulation of Nrf2, and subsequentially transactivate Gpx4 and other antioxidant factors. Site-specific mutation of R415A in Keap1 significantly attenuates the protective effects of CyCl against Dox-induced cardiotoxicity. Taken together, the capability of deep-learning-assisted phenotypic screening in identifying promising lead compounds against DIC is exhibited, and new perspectives into drug discovery in the era of artificial intelligence are provided.

摘要

阿霉素诱导性心肌病(DIC)带来了严峻的临床挑战,同时也需要不断开发辅助心脏保护疗法的药物。在此,建立了一种使用幼鱼心脏运动视频进行深度学习辅助多重心脏功能分析的斑马鱼表型筛选方法。通过在 2125 个标记心室图像的数据集上训练模型,ZVSegNet 和 HRNet 的性能优于以前的方法。作为高通量表型筛选的结果,矢车菊素(CyCl)被鉴定为 DIC 的有效抑制剂。CyCl 可有效挽救心脏细胞死亡,并在阿霉素(Dox)暴露的体外和体内模型中改善心脏功能。CyCl 对脂质过氧化和线粒体损伤有强烈的抑制作用,并可防止铁死亡和凋亡相关的细胞死亡。分子对接和热移位分析进一步表明 CyCl 与 Keap1 之间存在直接结合,这可能会竞争 Keap1-Nrf2 相互作用,促进 Nrf2 核积累,并随后转录激活 Gpx4 和其他抗氧化因子。Keap1 中 R415A 位点的特异性突变显著减弱了 CyCl 对 Dox 诱导的心脏毒性的保护作用。总之,该研究展示了深度学习辅助表型筛选在鉴定针对 DIC 的有前途的先导化合物方面的能力,并为人工智能时代的药物发现提供了新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3987/10602559/a78a474c147f/ADVS-10-2301136-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验