Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia.
Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093, Zürich, Switzerland.
Nat Commun. 2023 Sep 7;14(1):5498. doi: 10.1038/s41467-023-41244-3.
Antibiotics target key biological processes that include protein synthesis. Bacteria respond by developing resistance, which increases rapidly due to antibiotics overuse. Mupirocin, a clinically used natural antibiotic, inhibits isoleucyl-tRNA synthetase (IleRS), an enzyme that links isoleucine to its tRNA for protein synthesis. Two IleRSs, mupirocin-sensitive IleRS1 and resistant IleRS2, coexist in bacteria. The latter may also be found in resistant Staphylococcus aureus clinical isolates. Here, we describe the structural basis of mupirocin resistance and unravel a mechanism of hyper-resistance evolved by some IleRS2 proteins. We surprisingly find that an up to 10-fold increase in resistance originates from alteration of the HIGH motif, a signature motif of the class I aminoacyl-tRNA synthetases to which IleRSs belong. The structural analysis demonstrates how an altered HIGH motif could be adopted in IleRS2 but not IleRS1, providing insight into an elegant mechanism for coevolution of the key catalytic motif and associated antibiotic resistance.
抗生素靶向包括蛋白质合成在内的关键生物过程。细菌通过产生耐药性来应对,由于抗生素的过度使用,耐药性迅速增加。莫匹罗星是一种临床应用的天然抗生素,它抑制异亮氨酰-tRNA 合成酶(IleRS),该酶将异亮氨酸与其 tRNA 连接起来用于蛋白质合成。两种 IleRS,即莫匹罗星敏感型 IleRS1 和耐药型 IleRS2,共同存在于细菌中。后者也可能存在于耐药性金黄色葡萄球菌临床分离株中。在这里,我们描述了莫匹罗星耐药性的结构基础,并揭示了一些 IleRS2 蛋白进化出的超耐药机制。我们惊讶地发现,耐药性增加 10 倍的原因源自 HIGH 基序的改变,HIGH 基序是 IleRS 所属的 I 类氨酰-tRNA 合成酶的特征基序。结构分析表明,改变的 HIGH 基序如何被 IleRS2 采用,但不能被 IleRS1 采用,为关键催化基序和相关抗生素耐药性的协同进化提供了一个优雅的机制。