一项关于电子健康记录中乳腺癌表型自然语言处理算法的跨机构评估。
A cross-institutional evaluation on breast cancer phenotyping NLP algorithms on electronic health records.
作者信息
Zhou Sicheng, Wang Nan, Wang Liwei, Sun Ju, Blaes Anne, Liu Hongfang, Zhang Rui
机构信息
Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA.
School of Statistics, University of Minnesota, Minneapolis, MN, USA.
出版信息
Comput Struct Biotechnol J. 2023 Aug 22;22:32-40. doi: 10.1016/j.csbj.2023.08.018. eCollection 2023.
OBJECTIVE
Transformer-based language models are prevailing in the clinical domain due to their excellent performance on clinical NLP tasks. The generalizability of those models is usually ignored during the model development process. This study evaluated the generalizability of CancerBERT, a Transformer-based clinical NLP model, along with classic machine learning models, i.e., conditional random field (CRF), bi-directional long short-term memory CRF (BiLSTM-CRF), across different clinical institutes through a breast cancer phenotype extraction task.
MATERIALS AND METHODS
Two clinical corpora of breast cancer patients were collected from the electronic health records from the University of Minnesota (UMN) and Mayo Clinic (MC), and annotated following the same guideline. We developed three types of NLP models (i.e., CRF, BiLSTM-CRF and CancerBERT) to extract cancer phenotypes from clinical texts. We evaluated the generalizability of models on different test sets with different learning strategies (model transfer vs locally trained). The entity coverage score was assessed with their association with the model performances.
RESULTS
We manually annotated 200 and 161 clinical documents at UMN and MC. The corpora of the two institutes were found to have higher similarity between the target entities than the overall corpora. The CancerBERT models obtained the best performances among the independent test sets from two clinical institutes and the permutation test set. The CancerBERT model developed in one institute and further fine-tuned in another institute achieved reasonable performance compared to the model developed on local data (micro-F1: 0.925 vs 0.932).
CONCLUSIONS
The results indicate the CancerBERT model has superior learning ability and generalizability among the three types of clinical NLP models for our named entity recognition task. It has the advantage to recognize complex entities, e.g., entities with different labels.
目的
基于Transformer的语言模型因其在临床自然语言处理(NLP)任务中的出色表现而在临床领域盛行。在模型开发过程中,这些模型的可推广性通常被忽视。本研究通过一项乳腺癌表型提取任务,评估了基于Transformer的临床NLP模型CancerBERT以及经典机器学习模型(即条件随机场(CRF)、双向长短期记忆CRF(BiLSTM-CRF))在不同临床机构中的可推广性。
材料与方法
从明尼苏达大学(UMN)和梅奥诊所(MC)的电子健康记录中收集了两个乳腺癌患者的临床语料库,并按照相同的指南进行注释。我们开发了三种类型的NLP模型(即CRF、BiLSTM-CRF和CancerBERT),以从临床文本中提取癌症表型。我们使用不同的学习策略(模型迁移与本地训练)在不同的测试集上评估模型的可推广性。通过实体覆盖率得分及其与模型性能的关联来进行评估。
结果
我们在UMN和MC分别手动注释了200份和161份临床文档。发现两个机构的语料库中目标实体之间的相似度高于整体语料库。CancerBERT模型在来自两个临床机构的独立测试集和排列测试集中表现最佳。与在本地数据上开发的模型相比,在一个机构开发并在另一个机构进一步微调的CancerBERT模型取得了合理的性能(微F1值:0.925对0.932)。
结论
结果表明,在我们的命名实体识别任务中,CancerBERT模型在三种临床NLP模型中具有卓越的学习能力和可推广性。它在识别复杂实体(例如具有不同标签的实体)方面具有优势。
相似文献
Comput Struct Biotechnol J. 2023-8-22
J Am Med Inform Assoc. 2022-6-14
BMC Med Inform Decis Mak. 2022-3-23
Int J Med Inform. 2019-10-2
J Biomed Inform. 2018-9-12
Quant Imaging Med Surg. 2023-6-1
JMIR Med Inform. 2018-12-17
Artif Intell Med. 2022-5
引用本文的文献
JMIR Med Inform. 2024-10-21
J Am Med Inform Assoc. 2024-6-20
本文引用的文献
J Am Med Inform Assoc. 2022-6-14
AMIA Jt Summits Transl Sci Proc. 2021
J Am Med Inform Assoc. 2021-3-1
J Am Med Inform Assoc. 2020-12-9