Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland.
Department of Cardiology, Inselspital, University of Bern, Bern, Switzerland.
Eur J Nucl Med Mol Imaging. 2023 Dec;51(1):40-53. doi: 10.1007/s00259-023-06418-7. Epub 2023 Sep 8.
Image artefacts continue to pose challenges in clinical molecular imaging, resulting in misdiagnoses, additional radiation doses to patients and financial costs. Mismatch and halo artefacts occur frequently in gallium-68 (Ga)-labelled compounds whole-body PET/CT imaging. Correcting for these artefacts is not straightforward and requires algorithmic developments, given that conventional techniques have failed to address them adequately. In the current study, we employed differential privacy-preserving federated transfer learning (FTL) to manage clinical data sharing and tackle privacy issues for building centre-specific models that detect and correct artefacts present in PET images.
Altogether, 1413 patients with Ga prostate-specific membrane antigen (PSMA)/DOTA-TATE (TOC) PET/CT scans from 3 countries, including 8 different centres, were enrolled in this study. CT-based attenuation and scatter correction (CT-ASC) was used in all centres for quantitative PET reconstruction. Prior to model training, an experienced nuclear medicine physician reviewed all images to ensure the use of high-quality, artefact-free PET images (421 patients' images). A deep neural network (modified U2Net) was trained on 80% of the artefact-free PET images to utilize centre-based (CeBa), centralized (CeZe) and the proposed differential privacy FTL frameworks. Quantitative analysis was performed in 20% of the clean data (with no artefacts) in each centre. A panel of two nuclear medicine physicians conducted qualitative assessment of image quality, diagnostic confidence and image artefacts in 128 patients with artefacts (256 images for CT-ASC and FTL-ASC).
The three approaches investigated in this study for Ga-PET imaging (CeBa, CeZe and FTL) resulted in a mean absolute error (MAE) of 0.42 ± 0.21 (CI 95%: 0.38 to 0.47), 0.32 ± 0.23 (CI 95%: 0.27 to 0.37) and 0.28 ± 0.15 (CI 95%: 0.25 to 0.31), respectively. Statistical analysis using the Wilcoxon test revealed significant differences between the three approaches, with FTL outperforming CeBa and CeZe (p-value < 0.05) in the clean test set. The qualitative assessment demonstrated that FTL-ASC significantly improved image quality and diagnostic confidence and decreased image artefacts, compared to CT-ASC in Ga-PET imaging. In addition, mismatch and halo artefacts were successfully detected and disentangled in the chest, abdomen and pelvic regions in Ga-PET imaging.
The proposed approach benefits from using large datasets from multiple centres while preserving patient privacy. Qualitative assessment by nuclear medicine physicians showed that the proposed model correctly addressed two main challenging artefacts in Ga-PET imaging. This technique could be integrated in the clinic for Ga-PET imaging artefact detection and disentanglement using multicentric heterogeneous datasets.
图像伪影仍然是临床分子成像的挑战,导致误诊、患者额外接受辐射剂量和经济成本增加。镓-68(Ga)标记化合物全身 PET/CT 成像中经常出现配准和晕环伪影。由于传统技术未能充分解决这些伪影问题,因此纠正这些伪影并不简单,需要算法开发。在当前的研究中,我们采用差分隐私保护联邦转移学习(FTL)来管理临床数据共享,并解决隐私问题,以构建中心特定的模型,用于检测和纠正 PET 图像中的伪影。
共有来自 3 个国家(包括 8 个不同中心)的 1413 名 Ga 前列腺特异性膜抗原(PSMA)/DOTA-TATE(TOC)PET/CT 扫描患者纳入本研究。所有中心均使用基于 CT 的衰减和散射校正(CT-ASC)进行定量 PET 重建。在模型训练之前,一位有经验的核医学医师审查了所有图像,以确保使用高质量、无伪影的 PET 图像(421 名患者的图像)。一个经过修改的 U2Net 深度神经网络在 80%的无伪影 PET 图像上进行训练,以利用中心(CeBa)、集中(CeZe)和提出的差分隐私 FTL 框架。在每个中心的 20%的清洁数据(无伪影)中进行定量分析。由两名核医学医师对 128 名有伪影的患者(256 张 CT-ASC 和 FTL-ASC 图像)的图像质量、诊断信心和图像伪影进行定性评估。
本研究中针对 Ga-PET 成像(CeBa、CeZe 和 FTL)的三种方法的平均绝对误差(MAE)分别为 0.42±0.21(95%置信区间:0.38 至 0.47)、0.32±0.23(95%置信区间:0.27 至 0.37)和 0.28±0.15(95%置信区间:0.25 至 0.31)。使用 Wilcoxon 检验进行的统计学分析显示,FTL 在清洁测试集中的表现明显优于 CeBa 和 CeZe(p 值<0.05)。定性评估表明,与 CT-ASC 相比,FTL-ASC 显著改善了 Ga-PET 成像的图像质量和诊断信心,并减少了图像伪影。此外,在 Ga-PET 成像中,成功检测到并分离了胸部、腹部和骨盆区域的配准和晕环伪影。
所提出的方法受益于使用来自多个中心的大量数据集,同时保护患者隐私。核医学医师的定性评估表明,所提出的模型正确解决了 Ga-PET 成像中的两个主要挑战性伪影问题。该技术可以集成到临床中,用于 Ga-PET 成像伪影检测和使用多中心异构数据集的分离。