IEEE Trans Med Imaging. 2021 Nov;40(11):3154-3164. doi: 10.1109/TMI.2021.3076191. Epub 2021 Oct 27.
In positron emission tomography (PET), gating is commonly utilized to reduce respiratory motion blurring and to facilitate motion correction methods. In application where low-dose gated PET is useful, reducing injection dose causes increased noise levels in gated images that could corrupt motion estimation and subsequent corrections, leading to inferior image quality. To address these issues, we propose MDPET, a unified motion correction and denoising adversarial network for generating motion-compensated low-noise images from low-dose gated PET data. Specifically, we proposed a Temporal Siamese Pyramid Network (TSP-Net) with basic units made up of 1.) Siamese Pyramid Network (SP-Net), and 2.) a recurrent layer for motion estimation among the gates. The denoising network is unified with our motion estimation network to simultaneously correct the motion and predict a motion-compensated denoised PET reconstruction. The experimental results on human data demonstrated that our MDPET can generate accurate motion estimation directly from low-dose gated images and produce high-quality motion-compensated low-noise reconstructions. Comparative studies with previous methods also show that our MDPET is able to generate superior motion estimation and denoising performance. Our code is available at https://github.com/bbbbbbzhou/MDPET.
在正电子发射断层扫描(PET)中,门控技术通常用于减少呼吸运动模糊,并便于运动校正方法。在低剂量门控 PET 有用的应用中,降低注射剂量会导致门控图像中的噪声水平增加,从而破坏运动估计和后续校正,导致图像质量下降。为了解决这些问题,我们提出了 MDPET,这是一种用于从低剂量门控 PET 数据生成运动补偿低噪声图像的统一运动校正和去噪对抗网络。具体来说,我们提出了一种具有基本单元的时间双子塔网络(TSP-Net),该单元由 1.)双子塔网络(SP-Net)和 2.)用于门之间运动估计的递归层组成。去噪网络与我们的运动估计网络统一,以同时校正运动并预测运动补偿的去噪 PET 重建。对人体数据的实验结果表明,我们的 MDPET 可以直接从低剂量门控图像中生成准确的运动估计,并生成高质量的运动补偿低噪声重建。与以前的方法进行的比较研究也表明,我们的 MDPET 能够生成优越的运动估计和去噪性能。我们的代码可在 https://github.com/bbbbbbzhou/MDPET 上获得。