Ao Lingyi, Huang Junwei, Qin Feng, Li Zeya, Ideue Toshiya, Akhtari Keivan, Chen Peng, Bi Xiangyu, Qiu Caiyu, Huang Dajian, Chen Long, Belosludov Rodion V, Gou Huiyang, Ren Wencai, Nojima Tsutomu, Iwasa Yoshihiro, Bahramy Mohammad Saeed, Yuan Hongtao
National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210000, China.
Quantum-Phase Electronic Center and Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan.
Sci Adv. 2023 Sep 8;9(36):eadf6758. doi: 10.1126/sciadv.adf6758.
Two-dimensional superconductivity is primarily realized in atomically thin layers through extreme exfoliation, epitaxial growth, or interfacial gating. Apart from their technical challenges, these approaches lack sufficient control over the Fermiology of superconducting systems. Here, we offer a Fermiology-engineering approach, allowing us to desirably tune the coherence length of Cooper pairs and the dimensionality of superconducting states in arsenic phosphides AsP under hydrostatic pressure. We demonstrate how this turns these compounds into tunable two-dimensional superconductors with a dome-shaped phase diagram even in the bulk limit. This peculiar behavior is shown to result from an unconventional valley-dimensionality locking mechanism, driven by a delicate competition between three-dimensional hole-type and two-dimensional electron-type energy pockets spatially separated in momentum space. The resulting dimensionality crossover is further discussed to be systematically controllable by pressure and stoichiometry tuning. Our findings pave a unique way to realize and control superconducting phases with special pairing and dimensional orders.
二维超导主要通过极端剥离、外延生长或界面门控在原子级薄的层中实现。除了技术挑战外,这些方法对超导系统的费米学缺乏足够的控制。在这里,我们提供了一种费米学工程方法,使我们能够在静水压力下理想地调节砷化磷(AsP)中库珀对的相干长度和超导态的维度。我们展示了这如何使这些化合物即使在体极限下也能变成具有圆顶形相图的可调二维超导体。这种特殊行为被证明是由一种非常规的谷维锁定机制导致的,该机制由在动量空间中空间分离的三维空穴型和二维电子型能量口袋之间的微妙竞争驱动。进一步讨论了由此产生的维度交叉可通过压力和化学计量调整进行系统控制。我们的发现为实现和控制具有特殊配对和维度顺序的超导相开辟了一条独特的途径。