Suppr超能文献

综合软计算方法在住宅建筑热能性能优化中的应用。

Integrative soft computing approaches for optimizing thermal energy performance in residential buildings.

机构信息

Hunan Urban Construction Vocational and Technical College, Hunan, China.

Xiangtan Housing and Urban-Rural Development Bureau, Xiangtan, China.

出版信息

PLoS One. 2023 Sep 8;18(9):e0290719. doi: 10.1371/journal.pone.0290719. eCollection 2023.

Abstract

As is known, early prediction of thermal load in buildings can give valuable insight to engineers and energy experts in order to optimize the building design. Although different machine learning models have been promisingly employed for this problem, newer sophisticated techniques still require proper attention. This study aims at introducing novel hybrid algorithms for estimating building thermal load. The predictive models are artificial neural networks exposed to five optimizer algorithms, namely Archimedes optimization algorithm (AOA), Beluga whale optimization (BWO), forensic-based investigation (FBI), snake optimizer (SO), and transient search algorithm (TSO), for attaining optimal trainings. These five integrations aim at predicting the annual thermal energy demand. The accuracy of the models is broadly assessed using mean absolute percentage error (MAPE), root mean square error (RMSE), and coefficient of determination (R2) indicators and a ranking system is accordingly developed. As the MAPE and R2 reported, all obtained relative errors were below 5% and correlations were above 92% which confirm the general acceptability of the results and all used models. While the models exhibited different performances in training and testing stages, referring to the overall results, the BWO emerged as the most accurate algorithm, followed by the AOA and SO simultaneously in the second position, the FBI as the third, and TSO as the fourth accurate model. Mean absolute error (MAPE) and Considering the wide variety of artificial intelligence techniques that are used nowadays, the findings of this research may shed light on the selection of proper techniques for reliable energy performance analysis in complex buildings.

摘要

众所周知,建筑物热负荷的早期预测可以为工程师和能源专家提供有价值的见解,以便优化建筑物设计。尽管不同的机器学习模型在这个问题上表现出了很大的潜力,但更新的复杂技术仍然需要适当的关注。本研究旨在引入新的混合算法来估计建筑物的热负荷。预测模型是经过五个优化器算法(阿基米德优化算法(AOA)、白鲸优化算法(BWO)、基于法医调查的算法(FBI)、蛇优化算法(SO)和瞬态搜索算法(TSO))暴露的人工神经网络,以达到最佳的训练效果。这五个集成的目的是预测年度热能需求。使用平均绝对百分比误差(MAPE)、均方根误差(RMSE)和确定系数(R2)指标广泛评估模型的准确性,并相应地开发了一个排名系统。如 MAPE 和 R2 所报告的,所有获得的相对误差都低于 5%,相关性都高于 92%,这证实了结果和所有使用的模型的普遍可接受性。虽然这些模型在训练和测试阶段表现出不同的性能,但就整体结果而言,BWO 是最准确的算法,其次是 AOA 和 SO 同时位居第二,FBI 排名第三,TSO 排名第四。平均绝对误差(MAPE)和考虑到当今使用的各种人工智能技术,本研究的结果可能为选择适当的技术提供启示,以便对复杂建筑物的可靠能源性能进行分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cd2/10491398/5cab6323141d/pone.0290719.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验