Suppr超能文献

利用系统的旅行者抵达筛查实时监测国际 SARS-CoV-2 流行情况:一项观察性研究。

Real-time surveillance of international SARS-CoV-2 prevalence using systematic traveller arrival screening: An observational study.

机构信息

Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom.

Laboratory of Research on Emerging Viral Diseases, Institut Louis Malardé, Papeete, French Polynesia.

出版信息

PLoS Med. 2023 Sep 8;20(9):e1004283. doi: 10.1371/journal.pmed.1004283. eCollection 2023 Sep.

Abstract

BACKGROUND

Effective Coronavirus Disease 2019 (COVID-19) response relies on good knowledge of population infection dynamics, but owing to under-ascertainment and delays in symptom-based reporting, obtaining reliable infection data has typically required large dedicated local population studies. Although many countries implemented Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) testing among travellers, it remains unclear how accurately arrival testing data can capture international patterns of infection, because those arrival testing data were rarely reported systematically, and predeparture testing was often in place as well, leading to nonrepresentative infection status among arrivals.

METHODS AND FINDINGS

In French Polynesia, testing data were reported systematically with enforced predeparture testing type and timing, making it possible to adjust for nonrepresentative infection status among arrivals. Combining statistical models of polymerase chain reaction (PCR) positivity with data on international travel protocols, we reconstructed estimates of prevalence at departure using only testing data from arrivals. We then applied this estimation approach to the United States of America and France, using data from over 220,000 tests from travellers arriving into French Polynesia between July 2020 and March 2022. We estimated a peak infection prevalence at departure of 2.1% (95% credible interval: 1.7, 2.6%) in France and 1% (95% CrI: 0.63, 1.4%) in the USA in late 2020/early 2021, with prevalence of 4.6% (95% CrI: 3.9, 5.2%) and 4.3% (95% CrI: 3.6, 5%), respectively, estimated for the Omicron BA.1 waves in early 2022. We found that our infection estimates were a leading indicator of later reported case dynamics, as well as being consistent with subsequent observed changes in seroprevalence over time. We did not have linked data on traveller demography or unbiased domestic infection estimates (e.g., from random community infection surveys) in the USA and France. However, our methodology would allow for the incorporation of prior data from additional sources if available in future.

CONCLUSIONS

As well as elucidating previously unmeasured infection dynamics in these countries, our analysis provides a proof-of-concept for scalable and accurate leading indicator of global infections during future pandemics.

摘要

背景

有效的 2019 年冠状病毒病(COVID-19)应对依赖于对人群感染动态的良好了解,但由于漏报和症状报告的延迟,获得可靠的感染数据通常需要进行大规模的专门的当地人群研究。尽管许多国家对旅行者实施了严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)检测,但入境检测数据在多大程度上准确地捕捉到国际感染模式仍不清楚,因为这些入境检测数据很少系统报告,而且通常也有出发前检测,导致入境者的感染状况代表性不足。

方法和发现

在法属波利尼西亚,检测数据被系统报告,并实施了强制性的出发前检测类型和时间安排,这使得有可能调整入境者的代表性感染状况。我们结合聚合酶链反应(PCR)阳性率的统计模型和国际旅行协议的数据,仅使用入境者的检测数据来重建出发时的患病率估计值。然后,我们将这种估计方法应用于美国和法国,使用 2020 年 7 月至 2022 年 3 月期间从旅行者抵达法属波利尼西亚的超过 220000 次检测的数据。我们估计 2020 年末/2021 年初,法国的出发时感染率峰值为 2.1%(95%可信区间:1.7,2.6%),美国为 1%(95%可信区间:0.63,1.4%),2022 年初的 Omicron BA.1 波分别估计为 4.6%(95%可信区间:3.9,5.2%)和 4.3%(95%可信区间:3.6,5%)。我们发现,我们的感染估计数是后来报告的病例动态的领先指标,并且与随后随时间推移观察到的血清阳性率变化一致。我们没有美国和法国旅行者人口统计学方面的相关数据,也没有关于国内感染的无偏估计(例如,来自随机社区感染调查)。然而,如果未来有其他来源的数据,我们的方法将允许纳入这些数据。

结论

除了阐明这些国家以前未测量的感染动态外,我们的分析还为未来大流行期间全球感染的可扩展和准确的领先指标提供了概念验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6d2/10516411/8aed6de9de18/pmed.1004283.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验