Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, United Kingdom.
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom.
PLoS Comput Biol. 2022 Feb 2;18(2):e1009810. doi: 10.1371/journal.pcbi.1009810. eCollection 2022 Feb.
Biomolecular condensates formed via liquid-liquid phase separation (LLPS) play a crucial role in the spatiotemporal organization of the cell material. Nucleic acids can act as critical modulators in the stability of these protein condensates. To unveil the role of RNA length in regulating the stability of RNA binding protein (RBP) condensates, we present a multiscale computational strategy that exploits the advantages of a sequence-dependent coarse-grained representation of proteins and a minimal coarse-grained model wherein proteins are described as patchy colloids. We find that for a constant nucleotide/protein ratio, the protein fused in sarcoma (FUS), which can phase separate on its own-i.e., via homotypic interactions-only exhibits a mild dependency on the RNA strand length. In contrast, the 25-repeat proline-arginine peptide (PR25), which does not undergo LLPS on its own at physiological conditions but instead exhibits complex coacervation with RNA-i.e., via heterotypic interactions-shows a strong dependence on the length of the RNA strands. Our minimal patchy particle simulations suggest that the strikingly different effect of RNA length on homotypic LLPS versus RBP-RNA complex coacervation is general. Phase separation is RNA-length dependent whenever the relative contribution of heterotypic interactions sustaining LLPS is comparable or higher than those stemming from protein homotypic interactions. Taken together, our results contribute to illuminate the intricate physicochemical mechanisms that influence the stability of RBP condensates through RNA inclusion.
生物分子凝聚物通过液-液相分离(LLPS)形成,在细胞物质的时空组织中起着至关重要的作用。核酸可以作为这些蛋白质凝聚物稳定性的关键调节剂。为了揭示 RNA 长度在调节 RNA 结合蛋白(RBP)凝聚物稳定性中的作用,我们提出了一种多尺度计算策略,该策略利用了蛋白质序列依赖性粗粒化表示和最小粗粒化模型的优势,其中蛋白质被描述为带有斑点的胶体。我们发现,对于恒定的核苷酸/蛋白质比,肉瘤融合蛋白(FUS)可以通过同源相互作用自行相分离,即仅表现出对 RNA 链长度的轻度依赖。相比之下,25 个重复脯氨酸-精氨酸肽(PR25)在生理条件下本身不会发生 LLPS,而是与 RNA 表现出复杂的凝聚作用,即通过异源相互作用,对 RNA 链长度表现出强烈的依赖。我们的最小斑块粒子模拟表明,RNA 长度对同型 LLPS 与 RBP-RNA 复合物凝聚的显著不同影响是普遍的。只要维持 LLPS 的异源相互作用的相对贡献与源自蛋白质同型相互作用的贡献相当或更高,相分离就是 RNA 长度依赖性的。总的来说,我们的结果有助于阐明影响 RBP 凝聚物稳定性的复杂物理化学机制,这些凝聚物通过 RNA 包含。