Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, Germany.
Institute of Medical Informatics, University of Münster, D-48149 Münster, Germany.
Int J Mol Sci. 2023 Aug 29;24(17):13366. doi: 10.3390/ijms241713366.
The human heart controls blood flow, and therewith enables the adequate supply of oxygen and nutrients to the body. The correct function of the heart is coordinated by the interplay of different cardiac cell types. Thereby, one can distinguish between cells of the working myocardium, the pace-making cells in the sinoatrial node (SAN) and the conduction system cells in the AV-node, the His-bundle or the Purkinje fibres. Tissue-engineering approaches aim to generate hiPSC-derived cardiac tissues for disease modelling and therapeutic usage with a significant improvement in the differentiation quality of myocardium and pace-making cells. The differentiation of cells with cardiac conduction system properties is still challenging, and the produced cell mass and quality is poor. Here, we describe the generation of cardiac cells with properties of the cardiac conduction system, called conduction system-like cells (CSLC). As a primary approach, we introduced a CrispR-Cas9-directed knockout of the NKX2-5 gene in hiPSC. NKX2-5-deficient hiPSC showed altered connexin expression patterns characteristic for the cardiac conduction system with strong connexin 40 and connexin 43 expression and suppressed connexin 45 expression. Application of differentiation protocols for ventricular- or SAN-like cells could not reverse this connexin expression pattern, indicating a stable regulation by NKX2-5 on connexin expression. The contraction behaviour of the hiPSC-derived CSLCs was compared to hiPSC-derived ventricular- and SAN-like cells. We found that the contraction speed of CSLCs resembled the expected contraction rate of human conduction system cells. Overall contraction was reduced in differentiated cells derived from NKX2-5 knockout hiPSC. Comparative transcriptomic data suggest a specification of the cardiac subtype of CSLC that is distinctly different from ventricular or pacemaker-like cells with reduced myocardial gene expression and enhanced extracellular matrix formation for improved electrical insulation. In summary, knockout of NKX2-5 in hiPSC leads to enhanced differentiation of cells with cardiac conduction system features, including connexin expression and contraction behaviour.
人类心脏控制血流,从而为身体提供充足的氧气和营养物质。心脏的正常功能是由不同类型的心肌细胞相互作用协调的。因此,可以区分工作心肌细胞、窦房结(SAN)起搏细胞和房室结、希氏束或浦肯野纤维中的传导系统细胞。组织工程方法旨在生成 hiPSC 衍生的心脏组织,用于疾病建模和治疗用途,同时显著提高心肌和起搏细胞的分化质量。具有心脏传导系统特性的细胞的分化仍然具有挑战性,并且产生的细胞数量和质量较差。在这里,我们描述了具有心脏传导系统特性的心脏细胞的产生,称为传导系统样细胞(CSLC)。作为一种主要方法,我们在 hiPSC 中引入了 CRISPR-Cas9 靶向敲除 NKX2-5 基因。NKX2-5 缺陷型 hiPSC 显示出改变的连接蛋白表达模式,特征为心脏传导系统,具有强烈的连接蛋白 40 和连接蛋白 43 表达,并抑制连接蛋白 45 表达。应用心室或 SAN 样细胞的分化方案不能逆转这种连接蛋白表达模式,表明 NKX2-5 对连接蛋白表达的稳定调节。比较 hiPSC 衍生的 CSLC 的收缩行为与 hiPSC 衍生的心室和 SAN 样细胞。我们发现 CSLC 的收缩速度类似于人类传导系统细胞的预期收缩率。从 NKX2-5 敲除 hiPSC 分化而来的细胞的整体收缩减少。比较转录组数据表明 CSLC 具有心脏亚型的特征,与心室或起搏样细胞明显不同,心肌基因表达减少,细胞外基质形成增强,以提高电绝缘性。总之,在 hiPSC 中敲除 NKX2-5 可导致具有心脏传导系统特征的细胞,包括连接蛋白表达和收缩行为的增强分化。