Suppr超能文献

利用层递归神经网络模型进行 AQI 预测:一种新方法。

AQI prediction using layer recurrent neural network model: a new approach.

机构信息

Department of Civil Engineering, Bharat Institute of Engineering and Technology, Hyderabad, Telangana, India.

Department of Civil Engineering, College of Engineering, Jazan University, Jazan, 45142, Saudi Arabia.

出版信息

Environ Monit Assess. 2023 Sep 10;195(10):1180. doi: 10.1007/s10661-023-11646-3.

Abstract

The air quality index (AQI) prediction is important to evaluate the effects of air pollutants on human health. The airborne pollutants have been a major threat in Delhi both in the past and coming years. The air quality index is a figure, based on the cumulative effect of major air pollutant concentrations, used by Government agencies, for air quality assessment. Thus, the main aim of the present study is to predict the daily AQI one year in advance through three different neural network models (FF-NN, CF-NN and LR-NN) for the year 2020 and compare them. The models were trained using AQI values of previous year (2019). In addition to main air pollutants like PM/PM, O, SO, NOx, CO and NH, the non-criteria pollutants and meteorological data were also included as input parameter in this study. The model performances were assessed using statistical analysis. The key air pollutants contributing to high level of daily AQI were found to be PM/PM, CO and NO. The root mean square error (RMSE) values of 31.86 and 28.03 were obtained for the FF-NN and CF-NN models respectively whereas the LR-NN model has the minimum RMSE value of 26.79. LR-NN algorithm predicted the AQI values very closely to the actual values in almost all the seasons of the year. The LR-NN performance was also found to be the best in post-monsoon season i.e., October and November (maximum R = 0.94) with respect to other seasons. The study would aid air pollution control authorities to predict AQI more precisely and adopt suitable pollution control measures. Further research studies are recommended to compare the performance of LR-NN model with statistical, numerical and computational models for accurate air quality assessment.

摘要

空气质量指数 (AQI) 预测对于评估空气污染物对人类健康的影响非常重要。在过去和未来几年,空气中的污染物一直是德里的主要威胁。空气质量指数是一个数字,基于主要空气污染物浓度的累积效应,由政府机构用于空气质量评估。因此,本研究的主要目的是通过三种不同的神经网络模型 (FF-NN、CF-NN 和 LR-NN) 预测 2020 年的每日 AQI,并对其进行比较。模型使用前一年 (2019 年) 的 AQI 值进行训练。除了主要空气污染物如 PM/PM、O、SO、NOx、CO 和 NH 外,本研究还将非标准污染物和气象数据作为输入参数。使用统计分析评估模型性能。研究发现,导致每日 AQI 水平高的主要空气污染物是 PM/PM、CO 和 NO。FF-NN 和 CF-NN 模型的均方根误差 (RMSE) 值分别为 31.86 和 28.03,而 LR-NN 模型的 RMSE 值最小,为 26.79。LR-NN 算法几乎在一年中的所有季节都非常接近实际值地预测了 AQI 值。LR-NN 模型在季风后季节(即 10 月和 11 月)的性能也被发现是最好的,与其他季节相比,其最大 R 值为 0.94。这项研究将有助于空气污染控制当局更准确地预测 AQI,并采取适当的污染控制措施。建议进一步研究比较 LR-NN 模型与统计、数值和计算模型的性能,以进行准确的空气质量评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验