Suppr超能文献

在初级保健中识别慢性疼痛人群:开发一种算法和逻辑规则,并将其应用于编码的初级保健诊断和药物数据。

Identifying populations with chronic pain in primary care: developing an algorithm and logic rules applied to coded primary care diagnostic and medication data.

机构信息

Outcomes Based Healthcare, 11-13 Cavendish Square, Marylebone, London, W1G 0AN, UK.

Public Health Directorate, London Borough of Lambeth, Lambeth Civic Centre, 5th Floor, 2 Brixton Hill, London, SW2 1RW, UK.

出版信息

BMC Prim Care. 2023 Sep 11;24(1):184. doi: 10.1186/s12875-023-02134-1.

Abstract

BACKGROUND

Estimates of chronic pain prevalence using coded primary care data are likely to be substantially lower than estimates derived from community surveys. Most primary care studies have estimated chronic pain prevalence using data searches confined to analgesic medication prescriptions. Increasingly, following recent NICE guideline recommendations, patients and doctors opt for non-drug treatment of chronic pain thus excluding these patients from prevalence estimates based on medication codes. We aimed to develop and test an algorithm combining medication codes with selected diagnostic codes to estimate chronic pain prevalence using coded primary care data.

METHODS

Following a scoping review 4 criteria were developed to identify cohorts of people with chronic pain. These were (1) people with one of 12 ('tier 1') conditions that almost always results in the individual having chronic pain (2) people with one of 20 ('tier 2') conditions included when there are also 3 or more prescription-only analgesics issued in the last 12 months (3) chronic neuropathic pain, or (4) 4 or more prescription-only analgesics issued in the last 12 months. These were translated into 8 logic rules which included 1,932 SNOMED CT codes.

RESULTS

The algorithm was run on primary care data from 41 GP Practices in Lambeth. The total population consisted of 386,238 GP registered adults ≥ 18 years as of the 31st March 2021. 64,135 (16.6%) were identified as people with chronic pain. This definition demonstrated notably high rates in Black ethnicity females, and higher rates in the most deprived, and older population.

CONCLUSIONS

Estimates of chronic pain prevalence using structured healthcare data have previously shown lower prevalence estimates for chronic pain than reported in community surveys. This has limited the ability of researchers and clinicians to fully understand and address the complex multifactorial nature of chronic pain. Our study demonstrates that it may be possible to establish more representative prevalence estimates using structured data than previously possible. Use of logic rules offers the potential to move systematic identification and population-based management of chronic pain into mainstream clinical practice at scale and support improved management of symptom burden for people experiencing chronic pain.

摘要

背景

使用编码的初级保健数据估计慢性疼痛的患病率可能大大低于从社区调查中得出的估计值。大多数初级保健研究使用仅限于镇痛药处方的数据搜索来估计慢性疼痛的患病率。越来越多的患者和医生根据最近的 NICE 指南建议选择非药物治疗慢性疼痛,从而将这些患者排除在基于药物代码的患病率估计之外。我们旨在开发和测试一种算法,该算法结合药物代码和选定的诊断代码,以使用编码的初级保健数据估计慢性疼痛的患病率。

方法

在进行范围界定审查后,制定了 4 项标准来确定患有慢性疼痛的人群。这些标准是:(1)患有 12 种(“第 1 层”)疾病之一的人群,这些疾病几乎总是导致个体患有慢性疼痛;(2)患有 20 种(“第 2 层”)疾病之一的人群,同时在过去 12 个月内开具了 3 种或更多种处方止痛药;(3)慢性神经病理性疼痛;或(4)在过去 12 个月内开具了 4 种或更多种处方止痛药。这些标准被翻译成 8 个逻辑规则,其中包括 1932 个 SNOMED CT 代码。

结果

该算法在兰贝斯的 41 家全科医生诊所的初级保健数据上运行。截至 2021 年 3 月 31 日,总人口包括 386,238 名 18 岁及以上的 GP 注册成年人。有 64,135 人(16.6%)被确定为患有慢性疼痛的人。这一定义在黑人女性中表现出明显较高的发病率,在最贫困和老年人群中发病率更高。

结论

使用结构化医疗数据估计慢性疼痛的患病率之前显示,慢性疼痛的患病率估计值低于社区调查报告的患病率。这限制了研究人员和临床医生全面了解和解决慢性疼痛的复杂多因素性质的能力。我们的研究表明,使用结构化数据可能可以建立更具代表性的患病率估计值,这比以前可能的情况有所改善。逻辑规则的使用有可能将慢性疼痛的系统识别和基于人群的管理纳入主流临床实践,并支持改善患有慢性疼痛的人群的症状负担管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca7b/10494405/550d1c4b53fc/12875_2023_2134_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验