Zhou Dan, Liu Hongmei, Zheng Zhaomin, Wu Decheng
Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
Bioact Mater. 2023 Sep 4;31:422-439. doi: 10.1016/j.bioactmat.2023.08.012. eCollection 2024 Jan.
Annulus fibrosus (AF) plays a crucial role in the biomechanical loading of intervertebral disc (IVD). AF is difficult to self-heal when the annulus tears develop, because AF has a unique intricate structure and biologic milieu . Tissue engineering is promising for repairing AF rupture, but construction of suitable mechanical matching devices or scaffolds is still a grand challenge. To deeply know the varied forces involved in the movement of the native annulus is highly beneficial for designing biomimetic scaffolds to recreate the AF function. In this review, we overview six freedom degrees of forces and adhesion strength on AF tissue. Then, we summarize the mechanical modalities to simulate related forces on AF and to assess the characteristics of biomaterials. We finally outline some current advanced techniques to develop mechanically adaptable biomaterials for AF rupture repair.
纤维环(AF)在椎间盘(IVD)的生物力学负荷中起着关键作用。当纤维环撕裂发生时,纤维环很难自我愈合,因为纤维环具有独特的复杂结构和生物环境。组织工程在修复纤维环破裂方面很有前景,但构建合适的机械匹配装置或支架仍然是一个巨大的挑战。深入了解天然纤维环运动中涉及的各种力,对于设计仿生支架以重建纤维环功能非常有益。在这篇综述中,我们概述了作用于纤维环组织的六个自由度的力和粘附强度。然后,我们总结了模拟纤维环上相关力并评估生物材料特性的力学方式。我们最后概述了一些当前用于开发可机械适应的生物材料以修复纤维环破裂的先进技术。