Rao Vinod, Lanni Sylvia, Yule Amy M, DiSalvo Maura, Stone Mira, Berger Amy F, Wilens Timothy E
Department of Psychiatry, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.
Department of Psychiatry, Boston Medical Center, 801 Massachusetts Avenue, Boston, MA 02118, USA.
J Mood Anxiety Disord. 2023 Aug;2. doi: 10.1016/j.xjmad.2023.100007. Epub 2023 Jun 22.
One mechanism to examine if major depressive disorder (MDD) is related to the development of substance use disorder (SUD) is by leveraging naturalistic data available in the electronic health record (EHR). Rules for data extraction and variable construction linked to psychometrics validating their use are needed to extract data accurately.
We propose and validate a methodologic framework for using EHR variables to identify patients with MDD and non-nicotine SUD.
Proxy diagnoses and index dates of MDD and/or SUD were established using billing codes, problem lists, patient-reported outcome measures, and prescriptions. Manual chart reviews were conducted for the 1-year period surrounding each index date to determine (1) if proxy diagnoses were supported by chart notes and (2) if the index dates accurately captured disorder onset.
The results demonstrated 100% positive predictive value for proxy diagnoses of MDD. The proxy diagnoses for SUD exhibited strong agreement (Cohen's kappa of 0.84) compared to manual chart review and 92% sensitivity, specificity, positive predictive value, and negative predictive value. Sixteen percent of patients showed inaccurate SUD index dates generated by EHR extraction with discrepancies of over 6 months compared to SUD onset identified through chart review.
Our methodology was very effective in identifying patients with MDD with or without SUD and moderately effective in identifying SUD onset date. These findings support the use of EHR data to make proxy diagnoses of MDD with or without SUD.
检验重度抑郁症(MDD)是否与物质使用障碍(SUD)的发生相关的一种机制是利用电子健康记录(EHR)中可用的自然主义数据。需要数据提取规则和与验证其使用的心理测量学相关的变量构建规则来准确提取数据。
我们提出并验证一种使用EHR变量来识别患有MDD和非尼古丁SUD患者的方法框架。
使用计费代码、问题列表、患者报告的结局指标和处方来确定MDD和/或SUD的替代诊断及索引日期。围绕每个索引日期对1年期间的病历进行人工审查,以确定(1)替代诊断是否得到病历记录的支持,以及(2)索引日期是否准确捕捉到疾病发作。
结果显示MDD替代诊断的阳性预测值为100%。与人工病历审查相比,SUD的替代诊断显示出高度一致性(Cohen's kappa为0.84),敏感性、特异性、阳性预测值和阴性预测值均为92%。16%的患者显示EHR提取生成的SUD索引日期不准确,与通过病历审查确定的SUD发作相比,差异超过6个月。
我们的方法在识别患有或未患有SUD的MDD患者方面非常有效,在识别SUD发作日期方面中等有效。这些发现支持使用EHR数据对患有或未患有SUD的MDD进行替代诊断。