Suppr超能文献

用于改善冠状动脉CT血管造影图像质量的超分辨率深度学习重建

Super-Resolution Deep Learning Reconstruction for Improved Image Quality of Coronary CT Angiography.

作者信息

Takafuji Masafumi, Kitagawa Kakuya, Mizutani Sachio, Hamaguchi Akane, Kisou Ryosuke, Iio Kotaro, Ichikawa Kazuhide, Izumi Daisuke, Sakuma Hajime

机构信息

From the Department of Radiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Japan (M.T., K.K., H.S.); and Departments of Radiology (M.T., S.M., A.H., R.K.) and Cardiology (K. Iio, K. Ichikawa, D.I.), Matsusaka Municipal Hospital, Matsusaka, Japan.

出版信息

Radiol Cardiothorac Imaging. 2023 Aug 17;5(4):e230085. doi: 10.1148/ryct.230085. eCollection 2023 Aug.

Abstract

PURPOSE

To investigate image noise and edge sharpness of coronary CT angiography (CCTA) with super-resolution deep learning reconstruction (SR-DLR) compared with conventional DLR (C-DLR) and to evaluate agreement in stenosis grading using CCTA with that from invasive coronary angiography (ICA) as the reference standard.

MATERIALS AND METHODS

This retrospective study included 58 patients (mean age, 69.0 years ± 12.8 [SD]; 38 men, 20 women) who underwent CCTA using 320-row CT between April and September 2022. All images were reconstructed with two different algorithms: SR-DLR and C-DLR. Image noise, signal-to-noise ratio, edge sharpness, full width at half maximum (FWHM) of stent, and agreement in stenosis grading with that from ICA were compared. Stenosis was visually graded from 0 to 5, with 5 indicating occlusion.

RESULTS

SR-DLR significantly decreased image noise by 31% compared with C-DLR (12.6 HU ± 2.3 vs 18.2 HU ± 1.9; < .001). Signal-to-noise ratio and edge sharpness were significantly improved by SR-DLR compared with C-DLR (signal-to-noise ratio, 38.7 ± 8.3 vs 26.2 ± 4.6; < .001; edge sharpness, 560 HU/mm ± 191 vs 463 HU/mm ± 164; < .001). The FWHM of stent was significantly thinner on SR-DLR (0.72 mm ± 0.22) than on C-DLR (1.01 mm ± 0.21; < .001). Agreement in stenosis grading between CCTA and ICA was improved on SR-DLR compared with C-DLR (weighted κ = 0.83 vs 0.77).

CONCLUSION

SR-DLR improved vessel sharpness, image noise, and accuracy of coronary stenosis grading compared with the C-DLR technique. CT Angiography, Cardiac, Coronary Arteries . © RSNA, 2023.

摘要

目的

研究与传统深度学习重建(C-DLR)相比,超分辨率深度学习重建(SR-DLR)在冠状动脉CT血管造影(CCTA)中的图像噪声和边缘锐度,并以有创冠状动脉造影(ICA)为参考标准,评估CCTA在狭窄分级方面的一致性。

材料与方法

这项回顾性研究纳入了2022年4月至9月期间使用320排CT进行CCTA检查的58例患者(平均年龄69.0岁±12.8[标准差];男性38例,女性20例)。所有图像均采用两种不同算法重建:SR-DLR和C-DLR。比较了图像噪声、信噪比、边缘锐度、支架半高宽(FWHM)以及与ICA在狭窄分级方面的一致性。狭窄程度通过视觉分级为0至5级,5级表示闭塞。

结果

与C-DLR相比,SR-DLR显著降低了31%的图像噪声(12.6 HU±2.3对18.2 HU±1.9;P<.001)。与C-DLR相比,SR-DLR显著提高了信噪比和边缘锐度(信噪比,38.7±8.3对26.2±4.6;P<.001;边缘锐度,560 HU/mm±191对463 HU/mm±164;P<.001)。SR-DLR上支架的FWHM(0.72 mm±0.22)明显比C-DLR上的薄(1.01 mm±0.21;P<.001)。与C-DLR相比,SR-DLR提高了CCTA与ICA在狭窄分级方面的一致性(加权κ=0.83对0.77)。

结论

与C-DLR技术相比,SR-DLR提高了血管锐度、图像噪声和冠状动脉狭窄分级的准确性。CT血管造影、心脏、冠状动脉。©RSNA,2023。

相似文献

引用本文的文献

4
Future Applications of Cardiothoracic CT.心胸CT的未来应用
Radiology. 2025 Jun;315(3):e240085. doi: 10.1148/radiol.240085.

本文引用的文献

4
Physical evaluation of an ultra-high-resolution CT scanner.超高分辨率 CT 扫描仪的物理评估。
Eur Radiol. 2020 May;30(5):2552-2560. doi: 10.1007/s00330-019-06635-5. Epub 2020 Feb 10.
8
Coronary CT Angiography and 5-Year Risk of Myocardial Infarction.冠状动脉 CT 血管造影与 5 年内心肌梗死风险。
N Engl J Med. 2018 Sep 6;379(10):924-933. doi: 10.1056/NEJMoa1805971. Epub 2018 Aug 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验