Suppr超能文献

数字化慢性病管理模式:上海实施标准化医疗保健和大数据分析的可扩展策略。

The digitized chronic disease management model: scalable strategies for implementing standardized healthcare and big data analytics in Shanghai.

作者信息

Sui Mengyun, Cheng Minna, Zhang Sheng, Wang Yuheng, Yan Qinghua, Yang Qinping, Wu Fei, Xue Long, Shi Yan, Fu Chen

机构信息

Division of Chronic Non-communicable Diseases and Injury, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.

School of Public Health, Fudan University, Shanghai, China.

出版信息

Front Big Data. 2023 Aug 24;6:1241296. doi: 10.3389/fdata.2023.1241296. eCollection 2023.

Abstract

BACKGROUND

Chronic disease management (CDM) falls under production relations, and digital technology belongs to the realm of productivity. Production relations must adapt to the development of productivity. Simultaneously, the prevalence and burden of chronic diseases are becoming increasingly severe, leveraging digital technology to innovate chronic disease management model is essential.

METHODS

The model was built to cover experts in a number of fields, including administrative officials, public health experts, information technology staff, clinical experts, general practitioners, nurses, metrologists. Integration of multiple big data platforms such as General Practitioner Contract Platform, Integrated Community Multimorbidity Management System and Municipal and District-Level Health Information Comprehensive Platform. This study fully analyzes the organizational structure, participants, service objects, facilities and equipment, digital technology, operation process, etc., required for new model in the era of big data.

RESULTS

Based on information technology, we build Integrated Community Multimorbidity Care Model (ICMCM). This model is based on big data, is driven by "technology + mechanism," and uses digital technology as a tool to achieve the integration of services, technology integration, and data integration, thereby providing patients with comprehensive people-centered services. In order to promote the implementation of the ICMCM, Shanghai has established an integrated chronic disease management information system, clarified the role of each module and institution, and achieved horizontal and vertical integration of data and services. Moreover, we adopt standardized service processes and accurate blood pressure and blood glucose measurement equipment to provide services for patients and upload data in real time. On the basis of Integrated Community Multimorbidity Care Model, a platform and index system have been established, and the platform's multidimensional cross-evaluation and indicators are used for management and visual display.

CONCLUSIONS

The Integrated Community Multimorbidity Care Model guides chronic disease management in other countries and regions. We have utilized models to achieve a combination of services and management that provide a grip on chronic disease management.

摘要

背景

慢性病管理属于生产关系范畴,数字技术属于生产力领域。生产关系必须适应生产力的发展。同时,慢性病的患病率和负担日益加重,利用数字技术创新慢性病管理模式至关重要。

方法

该模型涵盖行政官员、公共卫生专家、信息技术人员、临床专家、全科医生、护士、计量学家等多个领域的专家。整合了全科医生签约平台、社区综合多病种管理系统、市和区级健康信息综合平台等多个大数据平台。本研究全面分析了大数据时代新模式所需的组织结构、参与者、服务对象、设施设备、数字技术、运行流程等。

结果

基于信息技术,构建了社区综合多病种照护模式(ICMCM)。该模式以大数据为基础,由“技术 + 机制”驱动,以数字技术为工具,实现服务整合、技术整合和数据整合,从而为患者提供以人为主的全面服务。为推动ICMCM的实施,上海建立了慢性病综合管理信息系统,明确了各模块和机构的作用,实现了数据和服务的横向与纵向整合。此外,采用标准化服务流程和精准的血压、血糖测量设备为患者提供服务并实时上传数据。在社区综合多病种照护模式的基础上,建立了一个平台和指标体系,利用平台的多维交叉评估和指标进行管理及可视化展示。

结论

社区综合多病种照护模式为其他国家和地区的慢性病管理提供了指导。我们利用该模式实现了服务与管理的结合,有力地掌控了慢性病管理。

相似文献

2
How can Big Data Analytics Support People-Centred and Integrated Health Services: A Scoping Review.
Int J Integr Care. 2022 Jun 16;22(2):23. doi: 10.5334/ijic.5543. eCollection 2022 Apr-Jun.
4
What should the government do regarding health policy-making to develop community health care in Shanghai?
Int J Health Plann Manage. 2011 Oct-Dec;26(4):379-435. doi: 10.1002/hpm.1117.
9
10
Design and Development of a Big Data Platform for Disease Burden Based on the Spark Engine.
Comput Intell Neurosci. 2023 Feb 6;2023:8963053. doi: 10.1155/2023/8963053. eCollection 2023.

本文引用的文献

2
How can Big Data Analytics Support People-Centred and Integrated Health Services: A Scoping Review.
Int J Integr Care. 2022 Jun 16;22(2):23. doi: 10.5334/ijic.5543. eCollection 2022 Apr-Jun.
4
IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.
Diabetes Res Clin Pract. 2022 Jan;183:109119. doi: 10.1016/j.diabres.2021.109119. Epub 2021 Dec 6.
5
The Critical Role of Health Information Technology in the Safe Integration of Behavioral Health and Primary Care to Improve Patient Care.
J Behav Health Serv Res. 2022 Apr;49(2):221-230. doi: 10.1007/s11414-021-09774-0. Epub 2021 Oct 19.
6
Blockchain applications in health care for COVID-19 and beyond: a systematic review.
Lancet Digit Health. 2021 Dec;3(12):e819-e829. doi: 10.1016/S2589-7500(21)00210-7. Epub 2021 Oct 13.
7
Accelerating health information technology capabilities across England's National Health Service.
Lancet Digit Health. 2021 Dec;3(12):e758-e759. doi: 10.1016/S2589-7500(21)00145-X. Epub 2021 Sep 28.
9
Health information technology to improve care for people with multiple chronic conditions.
Health Serv Res. 2021 Oct;56 Suppl 1(Suppl 1):1006-1036. doi: 10.1111/1475-6773.13860. Epub 2021 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验