From the Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus.
Arch Pathol Lab Med. 2024 May 1;148(5):e103-e110. doi: 10.5858/arpa.2023-0209-RA.
In 2021 the World Health Organization distributed a new classification of central nervous system tumors that incorporated modern testing modalities in the diagnosis. Although universally accepted as a scientifically superior system, this schema has created controversy because its deployment globally is challenging in the best of circumstances and impossible in resource-poor health care ecosystems. Compounding this problem is the significant challenge that neuropathologists with expertise in central nervous system tumors are rare.
To demonstrate diagnostic use of simple unsupervised machine learning techniques using publicly available data sets. I also discuss some potential solutions to the deployment of neuropathology classification in health care ecosystems burdened by this classification schema.
The Cancer Genome Atlas RNA sequencing data from low-grade and high-grade gliomas.
Methylation-based classification will be unable to solve all diagnostic problems in neuropathology. Information theory quantifications generate focused workflows in pathology, resulting in prevention of ordering unnecessary tests and identifying biomarkers that facilitate diagnosis.
2021 年,世界卫生组织发布了新的中枢神经系统肿瘤分类,该分类在诊断中纳入了现代检测方法。尽管这一分类被普遍认为是一种科学上更优越的系统,但由于其在全球范围内的部署在最好的情况下具有挑战性,在资源匮乏的医疗保健环境中则是不可能的,因此引起了争议。使问题更加复杂的是,中枢神经系统肿瘤领域的神经病理学家专家很少。
展示使用公共数据集的简单无监督机器学习技术的诊断用途。我还讨论了在受这种分类方案影响的医疗保健生态系统中部署神经病理学分类的一些潜在解决方案。
来自低级别和高级别神经胶质瘤的癌症基因组图谱 RNA 测序数据。
基于甲基化的分类将无法解决神经病理学中的所有诊断问题。信息理论量化在病理学中生成了重点工作流程,从而防止了不必要的测试,并确定了有助于诊断的生物标志物。