Yu Ruohan, Pan Yexin, Jiang Yuqian, Zhou Liang, Zhao Dongyuan, Van Tendeloo Gustaaf, Wu Jinsong, Mai Liqiang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.
Nanostructure Research Centre, Wuhan University of Technology, Wuhan, 430070, P. R. China.
Adv Mater. 2023 Dec;35(49):e2306504. doi: 10.1002/adma.202306504. Epub 2023 Oct 27.
Si nanoparticles (NPs) are considered as a promising high-capacity anode material owing to their ability to prevent mechanical failure from drastic volume change during (de)lithiation. However, upon cycling, a quick capacity fading is still observed for Si NPs, and the underlying mechanism remains elusive. In this contribution, it is demonstrated that the quick capacity fading is mainly caused by the generation of dead (electrochemically inert) Si with blocked electron conductivity in a densely composited Si/SEI (solid electrolyte interface) hybrid. This is due to the combined influence of electrolyte-related side reactions and the accompanied agglomeration of Si NPs. A compact, sub-nano scale interfused SiO /C composite coating onto the Si NPs is constructed, and a highly stabilized electrochemistry is achieved upon long cycling. The SiO /C coating with electron/ion dual transport paths and robust mechanical flexibility enables a fast and stable lithium ion/electron dual diffusion pathway towards the encapsulated Si. With fast reaction kinetics, stable SEI, and an antiagglomeration feature, the obtained Si@SiO /C composite demonstrates a stable high capacity. This work unravels new perspectives on the capacity fading of Si NPs and provides an effective encapsulating method to remedy the structure degradation and capacity fading of nano Si.
硅纳米颗粒(Si NPs)因其在(脱)锂过程中能够防止因剧烈体积变化而导致的机械失效,被认为是一种很有前景的高容量负极材料。然而,在循环过程中,Si NPs仍会出现快速的容量衰减,其潜在机制仍不清楚。在本研究中,证明了快速容量衰减主要是由于在密集复合的Si/SEI(固体电解质界面)混合物中生成了具有受阻电子传导性的死(电化学惰性)硅。这是由于电解质相关的副反应以及伴随的Si NPs团聚的综合影响。在Si NPs上构建了一种致密的亚纳米级相互融合的SiO/C复合涂层,经过长时间循环后实现了高度稳定的电化学性能。具有电子/离子双传输路径和强大机械柔韧性的SiO/C涂层能够实现朝向被包裹硅的快速稳定的锂离子/电子双扩散路径。凭借快速的反应动力学、稳定的SEI和抗团聚特性,所制备的Si@SiO/C复合材料展现出稳定的高容量。这项工作揭示了关于Si NPs容量衰减的新观点,并提供了一种有效的封装方法来补救纳米硅的结构退化和容量衰减。