Suppr超能文献

基于滑动窗口的自监督学习在高分辨率图像异常检测中的应用。

SWSSL: Sliding Window-Based Self-Supervised Learning for Anomaly Detection in High-Resolution Images.

出版信息

IEEE Trans Med Imaging. 2023 Dec;42(12):3860-3870. doi: 10.1109/TMI.2023.3314318. Epub 2023 Nov 30.

Abstract

Anomaly detection (AD) aims to determine if an instance has properties different from those seen in normal cases. The success of this technique depends on how well a neural network learns from normal instances. We observe that the learning difficulty scales exponentially with the input resolution, making it infeasible to apply AD to high-resolution images. Resizing them to a lower resolution is a compromising solution and does not align with clinical practice where the diagnosis could depend on image details. In this work, we propose to train the network and perform inference at the patch level, through the sliding window algorithm. This simple operation allows the network to receive high-resolution images but introduces additional training difficulties, including inconsistent image structure and higher variance. We address these concerns by setting the network's objective to learn augmentation-invariant features. We further study the augmentation function in the context of medical imaging. In particular, we observe that the resizing operation, a key augmentation in general computer vision literature, is detrimental to detection accuracy, and the inverting operation can be beneficial. We also propose a new module that encourages the network to learn from adjacent patches to boost detection performance. Extensive experiments are conducted on breast tomosynthesis and chest X-ray datasets and our method improves 8.03% and 5.66% AUC on image-level classification respectively over the current leading techniques. The experimental results demonstrate the effectiveness of our approach.

摘要

异常检测(AD)旨在确定实例是否具有与正常情况下看到的属性不同的属性。该技术的成功取决于神经网络从正常实例中学习的效果如何。我们观察到,学习难度随输入分辨率呈指数级增长,使得 AD 无法应用于高分辨率图像。将它们调整为较低的分辨率是一种妥协的解决方案,不符合临床实践,因为诊断可能取决于图像细节。在这项工作中,我们建议通过滑动窗口算法在补丁级别上训练网络并进行推理。这个简单的操作允许网络接收高分辨率图像,但会引入额外的训练困难,包括不一致的图像结构和更高的方差。我们通过将网络的目标设置为学习增强不变特征来解决这些问题。我们进一步研究了医学成像背景下的增强功能。特别是,我们观察到在一般计算机视觉文献中关键的增强操作,即调整大小操作,对检测精度不利,而反转操作可能是有益的。我们还提出了一个新的模块,鼓励网络从相邻的补丁中学习,以提高检测性能。我们在乳房断层合成和胸部 X 射线数据集上进行了广泛的实验,我们的方法在图像级分类上分别提高了 8.03%和 5.66%的 AUC,优于当前领先的技术。实验结果证明了我们方法的有效性。

相似文献

1
SWSSL: Sliding Window-Based Self-Supervised Learning for Anomaly Detection in High-Resolution Images.
IEEE Trans Med Imaging. 2023 Dec;42(12):3860-3870. doi: 10.1109/TMI.2023.3314318. Epub 2023 Nov 30.
2
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.
Cancer Biomark. 2025 Mar;42(3):18758592241311184. doi: 10.1177/18758592241311184. Epub 2025 Apr 4.
3
Incorporation of residual attention modules into two neural networks for low-dose CT denoising.
Med Phys. 2021 Jun;48(6):2973-2990. doi: 10.1002/mp.14856. Epub 2021 Apr 23.
4
SeLa-MIL: Developing an instance-level classifier via weakly-supervised self-training for whole slide image classification.
Comput Methods Programs Biomed. 2025 Apr;261:108614. doi: 10.1016/j.cmpb.2025.108614. Epub 2025 Jan 27.
6
Self-Path: Self-Supervision for Classification of Pathology Images With Limited Annotations.
IEEE Trans Med Imaging. 2021 Oct;40(10):2845-2856. doi: 10.1109/TMI.2021.3056023. Epub 2021 Sep 30.
8
An end-to-end breast tumour classification model using context-based patch modelling - A BiLSTM approach for image classification.
Comput Med Imaging Graph. 2021 Jan;87:101838. doi: 10.1016/j.compmedimag.2020.101838. Epub 2020 Dec 4.
9
Dual-branch Transformer for semi-supervised medical image segmentation.
J Appl Clin Med Phys. 2024 Oct;25(10):e14483. doi: 10.1002/acm2.14483. Epub 2024 Aug 12.

引用本文的文献

本文引用的文献

2
Anomaly Detection for Medical Images Using Self-Supervised and Translation-Consistent Features.
IEEE Trans Med Imaging. 2021 Dec;40(12):3641-3651. doi: 10.1109/TMI.2021.3093883. Epub 2021 Nov 30.
3
Autoencoders for unsupervised anomaly segmentation in brain MR images: A comparative study.
Med Image Anal. 2021 Apr;69:101952. doi: 10.1016/j.media.2020.101952. Epub 2021 Jan 2.
4
f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks.
Med Image Anal. 2019 May;54:30-44. doi: 10.1016/j.media.2019.01.010. Epub 2019 Jan 31.
5
Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning.
Cell. 2018 Feb 22;172(5):1122-1131.e9. doi: 10.1016/j.cell.2018.02.010.
6
An anomaly detection approach for the identification of DME patients using spectral domain optical coherence tomography images.
Comput Methods Programs Biomed. 2017 Feb;139:109-117. doi: 10.1016/j.cmpb.2016.11.001. Epub 2016 Nov 4.
7
Dermatologist-level classification of skin cancer with deep neural networks.
Nature. 2017 Feb 2;542(7639):115-118. doi: 10.1038/nature21056. Epub 2017 Jan 25.
9
Image quality assessment: from error visibility to structural similarity.
IEEE Trans Image Process. 2004 Apr;13(4):600-12. doi: 10.1109/tip.2003.819861.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验