Suppr超能文献

数据拯救生命:优化常规临床数据以用于罕见病研究。

Data saves lives: optimising routinely collected clinical data for rare disease research.

机构信息

Population, Policy and Practice Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.

Ulverscroft Vision Research Group, Great Ormond Street Institute of Child Health, University College London, London, UK.

出版信息

Orphanet J Rare Dis. 2023 Sep 11;18(1):285. doi: 10.1186/s13023-023-02912-1.

Abstract

Necessity driven organisational change in the post-pandemic landscape has seen health care providers adopting innovations to manage and process health data. These include the use of 'real-world' datasets of routinely collected clinical information, enabling data-driven delivery. Rare disease risks being 'left-behind' unless our clinical and research communities engage with the challenges and opportunities afforded by the burgeoning field of health data informatics. We address the challenges to the meaningful use and reuse of rare disease data, and, through a series of recommendations around workforce education, harmonisation of taxonomy, and ensuring an inclusive health data environment, we highlight the role that those who manage rare disease must play in addressing them.

摘要

在后疫情时代,为满足需求而进行的组织变革促使医疗保健提供者采用创新手段来管理和处理健康数据。其中包括使用常规收集的临床信息的“真实世界”数据集,从而实现数据驱动的服务提供。如果临床和研究界不参与蓬勃发展的健康数据信息学领域带来的挑战和机遇,那么罕见病很可能会被忽视。我们解决了罕见病数据的有效使用和再利用面临的挑战,并通过围绕劳动力教育、分类法协调以及确保包容的健康数据环境方面的一系列建议,强调了管理罕见病的人员必须在解决这些问题方面发挥的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cc2/10496203/7d0f88e18ef2/13023_2023_2912_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验