Suppr超能文献

分析大规模多重临床试验数据集时考虑强度变化的问题。

Accounting for intensity variation in image analysis of large-scale multiplexed clinical trial datasets.

机构信息

Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.

Life Science Zurich Graduate School, PhD Program in Biomedicine, University of Zurich, Zurich, Switzerland.

出版信息

J Pathol Clin Res. 2023 Nov;9(6):449-463. doi: 10.1002/cjp2.342. Epub 2023 Sep 11.

Abstract

Multiplex immunofluorescence (mIF) imaging can provide comprehensive quantitative and spatial information for multiple immune markers for tumour immunoprofiling. However, application at scale to clinical trial samples sourced from multiple institutions is challenging due to pre-analytical heterogeneity. This study reports an analytical approach to the largest multi-parameter immunoprofiling study of clinical trial samples to date. We analysed 12,592 tissue microarray (TMA) spots from 3,545 colorectal cancers sourced from more than 240 institutions in two clinical trials (QUASAR 2 and SCOT) stained for CD4, CD8, CD20, CD68, FoxP3, pan-cytokeratin, and DAPI by mIF. TMA slides were multi-spectrally imaged and analysed by cell-based and pixel-based marker analysis. We developed an adaptive thresholding method to account for inter- and intra-slide intensity variation in TMA analysis. Applying this method effectively ameliorated inter- and intra-slide intensity variation improving the image analysis results compared with methods using a single global threshold. Correlation of CD8 data derived by our mIF analysis approach with single-plex chromogenic immunohistochemistry CD8 data derived from subsequent sections indicates the validity of our method (Spearman's rank correlation coefficients ρ between 0.63 and 0.66, p ≪ 0.01) as compared with the current gold standard analysis approach. Evaluation of correlation between cell-based and pixel-based analysis results confirms equivalency (ρ > 0.8, p ≪ 0.01, except for CD20 in the epithelial region) of both analytical approaches. These data suggest that our adaptive thresholding approach can enable analysis of mIF-stained clinical trial TMA datasets by digital pathology at scale for precision immunoprofiling.

摘要

多重免疫荧光(mIF)成像可为肿瘤免疫分析提供多个免疫标志物的综合定量和空间信息。然而,由于分析前的异质性,将其应用于来自多个机构的临床试验样本规模仍然具有挑战性。本研究报告了迄今为止最大的多参数免疫分析研究的分析方法,该研究分析了来自两个临床试验(QUASAR2 和 SCOT)的 3545 例结直肠癌患者的 12592 个组织微阵列(TMA)点,这些 TMA 点使用 mIF 对 CD4、CD8、CD20、CD68、FoxP3、泛细胞角蛋白和 DAPI 进行染色。TMA 载玻片通过基于细胞和基于像素的标记物分析进行多光谱成像和分析。我们开发了一种自适应阈值方法来解释 TMA 分析中的内和内片强度变化。与使用单个全局阈值的方法相比,应用该方法可以有效地改善内和内片强度变化,从而改善图像分析结果。我们的 mIF 分析方法得出的 CD8 数据与后续切片的单重显色免疫组化 CD8 数据之间的相关性表明,与当前的金标准分析方法相比,该方法具有有效性(Spearman 秩相关系数 ρ 介于 0.63 和 0.66 之间,p ≪ 0.01)。对基于细胞和基于像素的分析结果之间相关性的评估证实了两种分析方法的等效性(ρ>0.8,p ≪ 0.01,除了上皮区域的 CD20 之外)。这些数据表明,我们的自适应阈值方法可以实现通过数字病理学对 mIF 染色的临床试验 TMA 数据集进行大规模的精确免疫分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bf9/10556275/45d68a4164f8/CJP2-9-449-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验