Suppr超能文献

变革医疗文档:利用人工智能的潜力生成出院小结。

Transforming healthcare documentation: harnessing the potential of AI to generate discharge summaries.

作者信息

Clough Reece Alexander James, Sparkes William Anthony, Clough Oliver Thomas, Sykes Joshua Thomas, Steventon Alexander Thomas, King Kate

机构信息

Institute of Naval Medicine, Gosport, UK

Institute of Naval Medicine, Gosport, UK.

出版信息

BJGP Open. 2024 Apr 25;8(1). doi: 10.3399/BJGPO.2023.0116. Print 2024 Apr.

Abstract

BACKGROUND

Hospital discharge summaries play an essential role in informing GPs of recent admissions to ensure excellent continuity of care and prevent adverse events; however, they are notoriously poorly written, time-consuming, and can result in delayed discharge.

AIM

To evaluate the potential of artificial intelligence (AI) to produce high-quality discharge summaries equivalent to the level of a doctor who has completed the UK Foundation Programme.

DESIGN & SETTING: Feasibility study using 25 mock patient vignettes.

METHOD

Twenty-five mock patient vignettes were written by the authors. Five junior doctors wrote discharge summaries from the case vignettes (five each). The same case vignettes were input into ChatGPT. In total, 50 discharge summaries were generated; 25 by Al and 25 by junior doctors. Quality and suitability were determined through both independent GP evaluators and adherence to a minimum dataset.

RESULTS

Of the 25 AI-written discharge summaries 100% were deemed by GPs to be of an acceptable quality compared with 92% of the junior doctor summaries. They both showed a mean compliance of 97% with the minimum dataset. In addition, the ability of GPs to determine if the summary was written by ChatGPT was poor, with only a 60% accuracy of detection. Similarly, when run through an AI-detection tool all were recognised as being very unlikely to be written by AI.

CONCLUSION

AI has proven to produce discharge summaries of equivalent quality to a junior doctor who has completed the UK Foundation Programme; however, larger studies with real-world patient data with NHS-approved AI tools will need to be conducted.

摘要

背景

医院出院小结在告知全科医生患者近期住院情况以确保优质的连续护理及预防不良事件方面发挥着至关重要的作用;然而,其撰写质量 notoriously 较差、耗时且可能导致出院延迟。

目的

评估人工智能(AI)生成高质量出院小结的潜力,使其达到完成英国基础培训计划的医生的水平。

设计与设置

使用25个模拟患者案例进行可行性研究。

方法

作者撰写了25个模拟患者案例。五名初级医生根据案例撰写出院小结(每人五个)。将相同的案例输入ChatGPT。总共生成了50份出院小结;25份由AI生成,25份由初级医生生成。通过独立的全科医生评估人员以及对最小数据集的遵循情况来确定质量和适用性。

结果

在25份由AI撰写的出院小结中,全科医生认为100%质量可接受,而初级医生撰写的小结这一比例为92%。它们与最小数据集的平均符合率均为97%。此外,全科医生判断小结是否由ChatGPT撰写的能力较差,检测准确率仅为60%。同样,当通过AI检测工具运行时,所有小结都被认为极不可能是由AI撰写的。

结论

事实证明,AI生成的出院小结质量与完成英国基础培训计划的初级医生相当;然而,需要使用经英国国家医疗服务体系(NHS)批准的AI工具对真实世界患者数据进行更大规模的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5ff/11169980/d9f072d9f3fe/bjgpopen-8-0116-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验