Liu Rui, Sun Mingzi, Liu Xiangjian, Lv Zunhang, Yu Xinyu, Wang Jinming, Liu Yarong, Li Liuhua, Feng Xiao, Yang Wenxiu, Huang Bolong, Wang Bo
Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China.
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
Angew Chem Int Ed Engl. 2023 Nov 13;62(46):e202312644. doi: 10.1002/anie.202312644. Epub 2023 Oct 9.
Developing highly efficient and stable hydrogen production catalysts for electrochemical water splitting (EWS) at industrial current densities remains a great challenge. Herein, we proposed a heterostructure-induced-strategy to optimize the metal-support interaction (MSI) and the EWS activity of Ru-Ni N/NiO. Density functional theory (DFT) calculations firstly predicted that the Ni N/NiO-heterostructures can improve the structural stability, electronic distributions, and orbital coupling of Ru-Ni N/NiO compared to Ru-Ni N and Ru-NiO, which accordingly decreases energy barriers and increases the electroactivity for EWS. As a proof-of-concept, the Ru-Ni N/NiO catalyst with a 2D Ni N/NiO-heterostructures nanosheet array, uniformly dispersed Ru nanoparticles, and strong MSI, was successfully constructed in the experiment, which exhibited excellent HER and OER activity with overpotentials of 190 mV and 385 mV at 1000 mA cm , respectively. Furthermore, the Ru-Ni N/NiO-based EWS device can realize an industrial current density (1000 mA cm ) at 1.74 V and 1.80 V under alkaline pure water and seawater conditions, respectively. Additionally, it also achieves a high durability of 1000 h (@ 500 mA cm ) in alkaline pure water.
开发用于工业电流密度下电化学水分解(EWS)的高效稳定析氢催化剂仍然是一个巨大的挑战。在此,我们提出了一种异质结构诱导策略,以优化Ru-Ni N/NiO的金属-载体相互作用(MSI)和EWS活性。密度泛函理论(DFT)计算首先预测,与Ru-Ni N和Ru-NiO相比,Ni N/NiO异质结构可以改善Ru-Ni N/NiO的结构稳定性、电子分布和轨道耦合,从而降低能量势垒并提高EWS的电活性。作为概念验证,实验成功构建了具有二维Ni N/NiO异质结构纳米片阵列、均匀分散的Ru纳米颗粒和强MSI的Ru-Ni N/NiO催化剂,该催化剂在1000 mA cm时分别表现出优异的析氢反应(HER)和析氧反应(OER)活性,过电位分别为190 mV和385 mV。此外,基于Ru-Ni N/NiO的EWS装置在碱性纯水和海水条件下分别可以在1.74 V和1.80 V下实现工业电流密度(1000 mA cm)。此外,它在碱性纯水中还实现了1000小时(@500 mA cm)的高耐久性。