Ylipää Erik, Chavan Swapnil, Bånkestad Maria, Broberg Johan, Glinghammar Björn, Norinder Ulf, Cotgreave Ian
Computer Systems Unit, Research Institutes of Sweden RISE, Kista 164 40, Sweden.
Unit of Chemical and Pharmaceutical Toxicology, Research Institutes of Sweden RISE, Södertalje 151 36, Sweden.
Curr Res Toxicol. 2023 Sep 1;5:100121. doi: 10.1016/j.crtox.2023.100121. eCollection 2023.
The rise of artificial intelligence (AI) based algorithms has gained a lot of interest in the pharmaceutical development field. Our study demonstrates utilization of traditional machine learning techniques such as random forest (RF), support-vector machine (SVM), extreme gradient boosting (XGBoost), deep neural network (DNN) as well as advanced deep learning techniques like gated recurrent unit-based DNN (GRU-DNN) and graph neural network (GNN), towards predicting human ether-á-go-go related gene (hERG) derived toxicity. Using the largest hERG dataset derived to date, we have utilized 203,853 and 87,366 compounds for training and testing the models, respectively. The results show that GNN, SVM, XGBoost, DNN, RF, and GRU-DNN all performed well, with validation set AUC ROC scores equals 0.96, 0.95, 0.95, 0.94, 0.94 and 0.94, respectively. The GNN was found to be the top performing model based on predictive power and generalizability. The GNN technique is free of any feature engineering steps while having a minimal human intervention. The GNN approach may serve as a basis for comprehensive automation in predictive toxicology. We believe that the models presented here may serve as a promising tool, both for academic institutes as well as pharmaceutical industries, in predicting hERG-liability in new molecular structures.
基于人工智能(AI)的算法的兴起在药物研发领域引起了广泛关注。我们的研究展示了传统机器学习技术的应用,如随机森林(RF)、支持向量机(SVM)、极端梯度提升(XGBoost)、深度神经网络(DNN),以及先进的深度学习技术,如基于门控循环单元的深度神经网络(GRU-DNN)和图神经网络(GNN),用于预测人醚 - 去极化相关基因(hERG)衍生的毒性。使用迄今为止获得的最大的hERG数据集,我们分别利用203,853种和87,366种化合物来训练和测试模型。结果表明,GNN、SVM、XGBoost、DNN、RF和GRU-DNN均表现良好,验证集AUC ROC分数分别为0.96、0.95、0.95、0.94、0.94和0.94。基于预测能力和泛化能力,GNN被发现是表现最佳的模型。GNN技术无需任何特征工程步骤,且人工干预最少。GNN方法可作为预测毒理学全面自动化的基础。我们相信,本文提出的模型可能成为学术机构和制药行业预测新分子结构中hERG毒性的有前景的工具。