Kerr Charles M, Silver Sophia E, Choi Yi Sun, Floy Martha E, Bradshaw Amy D, Cho Seung-Woo, Palecek Sean P, Mei Ying
Molecular Cell Biology and Pathobiology, Medical University of South Carolina, Charleston, SC, USA.
Bioengineering Department, Clemson University, Clemson, SC, USA.
Bioact Mater. 2023 Sep 7;31:463-474. doi: 10.1016/j.bioactmat.2023.08.023. eCollection 2024 Jan.
Human induced pluripotent stem cell derived cardiac fibroblasts (hiPSC-CFs) play a critical role in modeling human cardiovascular diseases . However, current culture substrates used for hiPSC-CF differentiation and expansion, such as Matrigel and tissue culture plastic (TCPs), are tissue mismatched and may provide pathogenic cues. Here, we report that hiPSC-CFs differentiated on Matrigel and expanded on tissue culture plastic (M-TCP-iCFs) exhibit transcriptomic hallmarks of activated fibroblasts limiting their translational potential. To alleviate pathogenic activation of hiPSC-CFs, we utilized decellularized extracellular matrix derived from porcine heart extracellular matrix (HEM) to provide a biomimetic substrate for improving hiPSC-CF phenotypes. We show that hiPSC-CFs differentiated and expanded on HEM (HEM-iCFs) exhibited reduced expression of hallmark activated fibroblast markers versus M-TCP-iCFs while retaining their cardiac fibroblast phenotype. HEM-iCFs also maintained a reduction in expression of hallmark genes associated with pathogenic fibroblasts when seeded onto TCPs. Further, HEM-iCFs more homogenously integrated into an hiPSC-derived cardiac organoid model, resulting in improved cardiomyocyte sarcomere development. In conclusion, HEM provides an improved substrate for the differentiation and propagation of hiPSC-CFs for disease modeling.
人诱导多能干细胞衍生的心脏成纤维细胞(hiPSC-CFs)在模拟人类心血管疾病中发挥着关键作用。然而,目前用于hiPSC-CF分化和扩增的培养底物,如基质胶和组织培养塑料(TCPs),与组织不匹配,可能会提供致病线索。在此,我们报告在基质胶上分化并在组织培养塑料上扩增的hiPSC-CFs(M-TCP-iCFs)表现出活化成纤维细胞的转录组特征,限制了它们的翻译潜力。为了减轻hiPSC-CFs的致病性激活,我们利用从猪心脏细胞外基质(HEM)衍生的脱细胞细胞外基质来提供一种仿生底物,以改善hiPSC-CF的表型。我们发现,在HEM上分化和扩增的hiPSC-CFs(HEM-iCFs)与M-TCP-iCFs相比,标志性活化成纤维细胞标志物的表达降低,同时保留了它们的心脏成纤维细胞表型。当接种到TCPs上时,HEM-iCFs还保持了与致病性成纤维细胞相关的标志性基因表达的降低。此外,HEM-iCFs更均匀地整合到hiPSC衍生的心脏类器官模型中,从而改善了心肌细胞肌节的发育。总之,HEM为hiPSC-CFs的分化和增殖提供了一种改进的底物,用于疾病建模。