Suppr超能文献

P-DOR,一个使用基因组学重建细菌爆发的简单易用的管道。

P-DOR, an easy-to-use pipeline to reconstruct bacterial outbreaks using genomics.

机构信息

Department of Biology and Biotechnology, University of Pavia, Pavia, 27100, Italy.

Department of Medical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, 27100, Italy.

出版信息

Bioinformatics. 2023 Sep 2;39(9). doi: 10.1093/bioinformatics/btad571.

Abstract

SUMMARY

Bacterial Healthcare-Associated Infections (HAIs) are a major threat worldwide, which can be counteracted by establishing effective infection control measures, guided by constant surveillance and timely epidemiological investigations. Genomics is crucial in modern epidemiology but lacks standard methods and user-friendly software, accessible to users without a strong bioinformatics proficiency. To overcome these issues we developed P-DOR, a novel tool for rapid bacterial outbreak characterization. P-DOR accepts genome assemblies as input, it automatically selects a background of publicly available genomes using k-mer distances and adds it to the analysis dataset before inferring a Single-Nucleotide Polymorphism (SNP)-based phylogeny. Epidemiological clusters are identified considering the phylogenetic tree topology and SNP distances. By analyzing the SNP-distance distribution, the user can gauge the correct threshold. Patient metadata can be inputted as well, to provide a spatio-temporal representation of the outbreak. The entire pipeline is fast and scalable and can be also run on low-end computers.

AVAILABILITY AND IMPLEMENTATION

P-DOR is implemented in Python3 and R and can be installed using conda environments. It is available from GitHub https://github.com/SteMIDIfactory/P-DOR under the GPL-3.0 license.

摘要

摘要

细菌的医源性感染(HAI)是全球范围内的主要威胁,可以通过建立有效的感染控制措施来对抗,这些措施以持续监测和及时的流行病学调查为指导。基因组学在现代流行病学中至关重要,但缺乏标准方法和用户友好的软件,不具备强大的生物信息学能力的用户难以使用。为了解决这些问题,我们开发了一种新的工具 P-DOR,用于快速细菌爆发特征描述。P-DOR 接受基因组组装作为输入,它使用 k-mer 距离自动选择背景公共基因组,并在推断基于单核苷酸多态性(SNP)的系统发育之前将其添加到分析数据集。考虑到系统发育树拓扑结构和 SNP 距离来识别流行病学聚类。通过分析 SNP 距离分布,用户可以确定正确的阈值。还可以输入患者元数据,以提供爆发的时空表示。整个管道快速且可扩展,也可以在低端计算机上运行。

可用性和实现

P-DOR 是用 Python3 和 R 实现的,可以使用 conda 环境安装。它可以从 GitHub https://github.com/SteMIDIfactory/P-DOR 获得,根据 GPL-3.0 许可证许可。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验