Pigula Michael, Lai Yen-Chung, Koh Minseob, Diercks Christian S, Rogers Thomas F, Dik David A, Schultz Peter G
Department of Chemistry, Scripps Research, La Jolla, CA, USA.
Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.
Nat Commun. 2024 Aug 8;15(1):6766. doi: 10.1038/s41467-024-50843-7.
Live vaccines are ideal for inducing immunity but suffer from the need to attenuate their pathogenicity or replication to preclude the possibility of escape. Unnatural amino acids (UAAs) provide a strategy to engineer stringent auxotrophies, yielding conditionally replication incompetent live bacteria with excellent safety profiles. Here, we engineer Pseudomonas aeruginosa to maintain auxotrophy for the UAA p-benzoyl-L-phenylalanine (BzF) through its incorporation into the essential protein DnaN. In vivo evolution using an Escherichia coli-based two-hybrid selection system enabled engineering of a mutant DnaN homodimeric interface completely dependent on a BzF-specific interaction. This engineered strain, Pa Vaccine, exhibits undetectable escape frequency (<10) and shows excellent safety in naïve mice. Animals vaccinated via intranasal or intraperitoneal routes are protected from lethal challenge with pathogenic P. aeruginosa PA14. These results establish UAA-auxotrophic bacteria as promising candidates for bacterial vaccine therapy and outline a platform for expanding this technology to diverse bacterial pathogens.
活疫苗是诱导免疫的理想选择,但需要减弱其致病性或复制能力以排除逃逸的可能性。非天然氨基酸(UAA)提供了一种构建严格营养缺陷型的策略,可产生具有优异安全性的条件性复制缺陷型活细菌。在此,我们通过将UAA对苯甲酰-L-苯丙氨酸(BzF)掺入必需蛋白DnaN中,对铜绿假单胞菌进行工程改造,使其维持对BzF的营养缺陷。利用基于大肠杆菌的双杂交筛选系统进行体内进化,能够对完全依赖BzF特异性相互作用的突变DnaN同型二聚体界面进行工程改造。这种工程菌株,即铜绿假单胞菌疫苗(Pa Vaccine),显示出无法检测到的逃逸频率(<10),并且在未接触过病原体的小鼠中表现出优异的安全性。通过鼻内或腹腔途径接种疫苗的动物可免受致病性铜绿假单胞菌PA14的致死性攻击。这些结果表明,UAA营养缺陷型细菌是细菌疫苗治疗的有前途的候选者,并概述了将该技术扩展到多种细菌病原体的平台。