Cao Sujiao, Long Yanping, Xiao Sutong, Deng Yuting, Ma Lang, Adeli Mohsen, Qiu Li, Cheng Chong, Zhao Changsheng
Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
Chem Soc Rev. 2023 Oct 2;52(19):6838-6881. doi: 10.1039/d3cs00087g.
Benefiting from low costs, structural diversities, tunable catalytic activities, feasible modifications, and high stability compared to the natural enzymes, reactive oxygen nanobiocatalysts (RONBCs) have become dominant materials in catalyzing and mediating reactive oxygen species (ROS) for diverse biomedical and biological applications. Decoding the catalytic mechanism and structure-reactivity relationship of RONBCs is critical to guide their future developments. Here, this timely review comprehensively summarizes the recent breakthroughs and future trends in creating and decoding RONBCs. First, the fundamental classification, activity, detection method, and reaction mechanism for biocatalytic ROS generation and elimination have been systematically disclosed. Then, the merits, modulation strategies, structure evolutions, and state-of-art characterisation techniques for designing RONBCs have been briefly outlined. Thereafter, we thoroughly discuss different RONBCs based on the reported major material species, including metal compounds, carbon nanostructures, and organic networks. In particular, we offer particular insights into the coordination microenvironments, bond interactions, reaction pathways, and performance comparisons to disclose the structure-reactivity relationships and mechanisms. In the end, the future challenge and perspectives for RONBCs are also carefully summarised. We envision that this review will provide a comprehensive understanding and guidance for designing ROS-catalytic materials and stimulate the wide utilisation of RONBCs in diverse biomedical and biological applications.
与天然酶相比,活性氧纳米生物催化剂(RONBCs)具有低成本、结构多样性、可调节的催化活性、可行的修饰方法以及高稳定性等优点,已成为催化和介导活性氧(ROS)用于各种生物医学和生物学应用的主要材料。解析RONBCs的催化机制和结构-反应性关系对于指导其未来发展至关重要。在此,这篇及时的综述全面总结了在创建和解析RONBCs方面的最新突破和未来趋势。首先,系统地揭示了生物催化ROS产生和消除的基本分类、活性、检测方法及反应机制。然后,简要概述了设计RONBCs的优点、调控策略、结构演变及最新表征技术。此后,我们基于已报道的主要材料种类,包括金属化合物、碳纳米结构和有机网络,对不同的RONBCs进行了深入讨论。特别是,我们对配位微环境、键相互作用、反应途径及性能比较进行了详细探讨,以揭示结构-反应性关系和机制。最后,还仔细总结了RONBCs未来面临的挑战和前景。我们预计,这篇综述将为设计ROS催化材料提供全面的理解和指导,并推动RONBCs在各种生物医学和生物学应用中的广泛应用。