Rong Xiao, Xiao Sutong, Geng Wei, Zhu Bihui, Mou Ping, Ding Zichuan, Zhang Boqing, Fan Yujiang, Qiu Li, Cheng Chong
Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, China.
College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, China.
Nat Commun. 2025 Jul 4;16(1):6150. doi: 10.1038/s41467-025-61377-x.
To mitigate the necessity for multiple invasive procedures in treating malignant osteosarcoma, an innovative therapeutic approach is imperative to achieve controllable tumor-killing effects and subsequent bone repair. Here, we propose the de novo design of sono-activable and biocatalytic nanoparticles-modified 3D-printed hydroxyapatite (HA) scaffold (HS-ICTO) for intelligently sequential therapies in osteosarcoma eradication and bone defect regeneration. The engineered HS-ICTO scaffold displays superior, spatiotemporally controllable HO-catalytic performances, which promptly generate massive reactive oxygen species via multienzyme-like mechanisms coupled with sono-activation, thus augmenting tumor cell apoptosis. Furthermore, HS-ICTO can intelligently switch to catalyze HO to O within the inflammatory bone defect microenvironment, effectively blocking endogenous HO-mediated oxidative stress, which positively modulates the osteogenic differentiation of stem cells and ultimately facilitates defect regeneration. We validate that this multifaceted HS-ICTO scaffold possesses robust and on-demand abilities to prevent neoplastic recurrence and promote anti-inflammatory osseous tissue repair, representing a promising platform for precision oncological intervention and regenerative medicine.
为了减少治疗恶性骨肉瘤时多次侵入性手术的必要性,必须有一种创新的治疗方法来实现可控的肿瘤杀伤效果以及后续的骨修复。在此,我们提出从头设计声激活和生物催化纳米颗粒修饰的3D打印羟基磷灰石(HA)支架(HS-ICTO),用于骨肉瘤根除和骨缺损再生的智能序贯治疗。工程化的HS-ICTO支架表现出卓越的、时空可控的HO催化性能,其通过与声激活耦合的多酶样机制迅速产生大量活性氧,从而增强肿瘤细胞凋亡。此外,HS-ICTO能够在炎性骨缺损微环境中智能地将HO催化为O,有效阻断内源性HO介导的氧化应激,这对干细胞的成骨分化产生积极调节作用,并最终促进缺损再生。我们证实,这种多方面的HS-ICTO支架具有强大且按需的能力来预防肿瘤复发并促进抗炎性骨组织修复,代表了一个用于精准肿瘤干预和再生医学的有前景的平台。