文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过语言处理模型评估患者满意度:模型开发与评估

Estimating Patient Satisfaction Through a Language Processing Model: Model Development and Evaluation.

作者信息

Matsuda Shinichi, Ohtomo Takumi, Okuyama Masaru, Miyake Hiraku, Aoki Kotonari

机构信息

Drug Safety Division, Chugai Pharmaceutical Co Ltd, Tokyo, Japan.

Initiative Inc, Tokyo, Japan.

出版信息

JMIR Form Res. 2023 Sep 14;7:e48534. doi: 10.2196/48534.


DOI:10.2196/48534
PMID:37707946
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10540017/
Abstract

BACKGROUND: Measuring patient satisfaction is a crucial aspect of medical care. Advanced natural language processing (NLP) techniques enable the extraction and analysis of high-level insights from textual data; nonetheless, data obtained from patients are often limited. OBJECTIVE: This study aimed to create a model that quantifies patient satisfaction based on diverse patient-written textual data. METHODS: We constructed a neural network-based NLP model for this cross-sectional study using the textual content from disease blogs written in Japanese on the Internet between 1994 and 2020. We extracted approximately 20 million sentences from 56,357 patient-authored disease blogs and constructed a model to predict the patient satisfaction index (PSI) using a regression approach. After evaluating the model's effectiveness, PSI was predicted before and after cancer notification to examine the emotional impact of cancer diagnoses on 48 patients with breast cancer. RESULTS: We assessed the correlation between the predicted and actual PSI values, labeled by humans, using the test set of 169 sentences. The model successfully quantified patient satisfaction by detecting nuances in sentences with excellent effectiveness (Spearman correlation coefficient [ρ]=0.832; root-mean-squared error [RMSE]=0.166; P<.001). Furthermore, the PSI was significantly lower in the cancer notification period than in the preceding control period (-0.057 and -0.012, respectively; 2-tailed t=5.392, P<.001), indicating that the model quantifies the psychological and emotional changes associated with the cancer diagnosis notification. CONCLUSIONS: Our model demonstrates the ability to quantify patient dissatisfaction and identify significant emotional changes during the disease course. This approach may also help detect issues in routine medical practice.

摘要

背景:测量患者满意度是医疗护理的关键环节。先进的自然语言处理(NLP)技术能够从文本数据中提取和分析高层次的见解;然而,从患者那里获得的数据往往有限。 目的:本研究旨在创建一个基于多样化患者撰写的文本数据来量化患者满意度的模型。 方法:我们为这项横断面研究构建了一个基于神经网络的NLP模型,使用1994年至2020年期间在互联网上用日语撰写的疾病博客的文本内容。我们从56357篇患者撰写的疾病博客中提取了约2000万个句子,并使用回归方法构建了一个预测患者满意度指数(PSI)的模型。在评估模型的有效性后,在癌症告知前后对48例乳腺癌患者的PSI进行预测,以检查癌症诊断的情感影响。 结果:我们使用169个句子的测试集评估了预测的和由人类标注的实际PSI值之间的相关性。该模型通过检测句子中的细微差别成功地量化了患者满意度,效果极佳(斯皮尔曼相关系数[ρ]=0.832;均方根误差[RMSE]=0.166;P<0.001)。此外,癌症告知期的PSI显著低于之前的对照期(分别为-0.057和-0.012;双侧t=5.392,P<0.001),表明该模型量化了与癌症诊断告知相关的心理和情绪变化。 结论:我们的模型展示了量化患者不满以及识别疾病过程中显著情绪变化的能力。这种方法也可能有助于发现常规医疗实践中的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44dd/10540017/bc5f62bcb038/formative_v7i1e48534_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44dd/10540017/73d316c75c93/formative_v7i1e48534_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44dd/10540017/3aed1a3945cd/formative_v7i1e48534_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44dd/10540017/e01624cdec39/formative_v7i1e48534_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44dd/10540017/3e8c1d7c6715/formative_v7i1e48534_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44dd/10540017/bc5f62bcb038/formative_v7i1e48534_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44dd/10540017/73d316c75c93/formative_v7i1e48534_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44dd/10540017/3aed1a3945cd/formative_v7i1e48534_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44dd/10540017/e01624cdec39/formative_v7i1e48534_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44dd/10540017/3e8c1d7c6715/formative_v7i1e48534_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44dd/10540017/bc5f62bcb038/formative_v7i1e48534_fig5.jpg

相似文献

[1]
Estimating Patient Satisfaction Through a Language Processing Model: Model Development and Evaluation.

JMIR Form Res. 2023-9-14

[2]
Predicting Semantic Similarity Between Clinical Sentence Pairs Using Transformer Models: Evaluation and Representational Analysis.

JMIR Med Inform. 2021-5-26

[3]
Blog Posting After Lung Cancer Notification: Content Analysis of Blogs Written by Patients or Their Families.

JMIR Cancer. 2015-5-18

[4]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[5]
Detection of Depression Severity Using Bengali Social Media Posts on Mental Health: Study Using Natural Language Processing Techniques.

JMIR Form Res. 2022-9-28

[6]
Automatic Classification of Thyroid Findings Using Static and Contextualized Ensemble Natural Language Processing Systems: Development Study.

JMIR Med Inform. 2021-9-21

[7]
Extracting Multiple Worries From Breast Cancer Patient Blogs Using Multilabel Classification With the Natural Language Processing Model Bidirectional Encoder Representations From Transformers: Infodemiology Study of Blogs.

JMIR Cancer. 2022-6-3

[8]
The Real-World Experiences of Persons With Multiple Sclerosis During the First COVID-19 Lockdown: Application of Natural Language Processing.

JMIR Med Inform. 2022-11-10

[9]
Machine learning and natural language processing (NLP) approach to predict early progression to first-line treatment in real-world hormone receptor-positive (HR+)/HER2-negative advanced breast cancer patients.

Eur J Cancer. 2021-2

[10]
The 2019 n2c2/OHNLP Track on Clinical Semantic Textual Similarity: Overview.

JMIR Med Inform. 2020-11-27

引用本文的文献

[1]
Predicting patient reported outcome measures: a scoping review for the artificial intelligence-guided patient preference predictor.

Front Artif Intell. 2024-11-5

[2]
Adverse Event Signal Detection Using Patients' Concerns in Pharmaceutical Care Records: Evaluation of Deep Learning Models.

J Med Internet Res. 2024-4-16

本文引用的文献

[1]
When BERT meets Bilbo: a learning curve analysis of pretrained language model on disease classification.

BMC Med Inform Decis Mak. 2022-4-5

[2]
Incorporating Unstructured Patient Narratives and Health Insurance Claims Data in Pharmacovigilance: Natural Language Processing Analysis of Patient-Generated Texts About Systemic Lupus Erythematosus.

JMIR Public Health Surveill. 2021-6-29

[3]
Applying natural language processing and machine learning techniques to patient experience feedback: a systematic review.

BMJ Health Care Inform. 2021-3

[4]
Trust, medical expertise and humaneness: A qualitative study on people with cancer' satisfaction with medical care.

Health Expect. 2021-4

[5]
Developing a standardized protocol for computational sentiment analysis research using health-related social media data.

J Am Med Inform Assoc. 2021-6-12

[6]
Using the contextual language model BERT for multi-criteria classification of scientific articles.

J Biomed Inform. 2020-12

[7]
Patient-reported outcomes in survivors of breast cancer one, three, and five years post-diagnosis: a cancer registry-based feasibility study.

Qual Life Res. 2021-2

[8]
Patient factors associated with discrepancies between patient-reported and clinician-documented peripheral neuropathy in women with breast cancer receiving paclitaxel: A pilot study.

Breast. 2020-6

[9]
Patient-Experience Data and Bias - What Ratings Don't Tell Us.

N Engl J Med. 2019-2-28

[10]
The usefulness of listening social media for pharmacovigilance purposes: a systematic review.

Expert Opin Drug Saf. 2018-10-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索