IEEE J Biomed Health Inform. 2023 Nov;27(11):5225-5236. doi: 10.1109/JBHI.2023.3315715. Epub 2023 Nov 7.
The value of Electrocardiogram (ECG) monitoring in early cardiovascular disease (CVD) detection is undeniable, especially with the aid of intelligent wearable devices. Despite this, the requirement for expert interpretation significantly limits public accessibility, underscoring the need for advanced diagnosis algorithms. Deep learning-based methods represent a leap beyond traditional rule-based algorithms, but they are not without challenges such as small databases, inefficient use of local and global ECG information, high memory requirements for deploying multiple models, and the absence of task-to-task knowledge transfer. In response to these challenges, we propose a multi-resolution model adept at integrating local morphological characteristics and global rhythm patterns seamlessly. We also introduce an innovative ECG continual learning (ECG-CL) approach based on parameter isolation, designed to enhance data usage effectiveness and facilitate inter-task knowledge transfer. Our experiments, conducted on four publicly available databases, provide evidence of our proposed continual learning method's ability to perform incremental learning across domains, classes, and tasks. The outcome showcases our method's capability in extracting pertinent morphological and rhythmic features from ECG segmentation, resulting in a substantial enhancement of classification accuracy. This research not only confirms the potential for developing comprehensive ECG interpretation algorithms based on single-lead ECGs but also fosters progress in intelligent wearable applications. By leveraging advanced diagnosis algorithms, we aspire to increase the accessibility of ECG monitoring, thereby contributing to early CVD detection and ultimately improving healthcare outcomes.
心电图(ECG)监测在早期心血管疾病(CVD)检测中的价值是不可否认的,尤其是在智能可穿戴设备的辅助下。尽管如此,专业解释的需求极大地限制了公众的可及性,这突显了先进诊断算法的必要性。基于深度学习的方法代表了超越传统基于规则算法的飞跃,但它们并非没有挑战,例如数据库规模较小、局部和全局 ECG 信息利用效率低、部署多个模型需要大量内存以及缺乏任务间知识转移。针对这些挑战,我们提出了一种擅长无缝集成局部形态特征和全局节律模式的多分辨率模型。我们还引入了一种基于参数隔离的创新 ECG 持续学习(ECG-CL)方法,旨在提高数据使用效率并促进任务间知识转移。我们在四个公开可用的数据库上进行的实验证明了我们提出的持续学习方法在跨域、类和任务中进行增量学习的能力。结果展示了我们的方法从 ECG 分段中提取相关形态和节律特征的能力,从而显著提高了分类准确性。这项研究不仅证实了基于单导联 ECG 开发全面 ECG 解释算法的潜力,还推动了智能可穿戴应用的发展。通过利用先进的诊断算法,我们希望增加 ECG 监测的可及性,从而有助于早期 CVD 检测,并最终改善医疗保健结果。