School of Biomedical Engineering, Southern Medical University, Guangzhou, China.
Guangdong Provincial Key Laboratory of Medical Image Processing, Guangzhou, China.
Nat Commun. 2023 Jun 23;14(1):3741. doi: 10.1038/s41467-023-39472-8.
Cardiovascular disease is a major global public health problem, and intelligent diagnostic approaches play an increasingly important role in the analysis of electrocardiograms (ECGs). Convenient wearable ECG devices enable the detection of transient arrhythmias and improve patient health by making it possible to seek intervention during continuous monitoring. We collected 658,486 wearable 12-lead ECGs, among which 164,538 were annotated, and the remaining 493,948 were without diagnostic. We present four data augmentation operations and a self-supervised learning classification framework that can recognize 60 ECG diagnostic terms. Our model achieves an average area under the receiver-operating characteristic curve (AUROC) and average F1 score on the offline test of 0.975 and 0.575. The average sensitivity, specificity and F1-score during the 2-month online test are 0.736, 0.954 and 0.468, respectively. This approach offers real-time intelligent diagnosis, and detects abnormal segments in long-term ECG monitoring in the clinical setting for further diagnosis by cardiologists.
心血管疾病是一个全球性的主要公共卫生问题,智能诊断方法在心电图(ECG)分析中发挥着越来越重要的作用。方便的可穿戴 ECG 设备通过在连续监测期间进行干预,实现对短暂性心律失常的检测,并改善患者的健康状况。我们收集了 658486 份可穿戴 12 导联 ECG,其中 164538 份有注释,其余 493948 份没有诊断。我们提出了四种数据增强操作和一个自监督学习分类框架,可以识别 60 种心电图诊断术语。我们的模型在离线测试中的平均接收者操作特征曲线下面积(AUROC)和平均 F1 分数分别为 0.975 和 0.575。在 2 个月的在线测试中,平均灵敏度、特异性和 F1 分数分别为 0.736、0.954 和 0.468。该方法提供实时智能诊断,并在临床环境中对长期 ECG 监测中的异常片段进行检测,以便心脏病专家进一步诊断。