Suppr超能文献

基于时空分辨推断的神经生理过程成像:在静息态 alpha 节律中的应用。

Space-time resolved inference-based neurophysiological process imaging: Application to resting-state alpha rhythm.

机构信息

Department of Data Science and Artificial Intelligence, Faculty of Information Technology, Monash University, Clayton, Victoria, Australia.

Swinburne University of Technology, Hawthorn, Australia; Laboratoire de Recherche en Neuroimagerie (LREN), University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.

出版信息

Neuroimage. 2022 Nov;263:119592. doi: 10.1016/j.neuroimage.2022.119592. Epub 2022 Aug 27.

Abstract

Neural processes are complex and difficult to image. This paper presents a new space-time resolved brain imaging framework, called Neurophysiological Process Imaging (NPI), that identifies neurophysiological processes within cerebral cortex at the macroscopic scale. By fitting uncoupled neural mass models to each electromagnetic source time-series using a novel nonlinear inference method, population averaged membrane potentials and synaptic connection strengths are efficiently and accurately inferred and imaged across the whole cerebral cortex at a resolution afforded by source imaging. The efficiency of the framework enables return of the augmented source imaging results overnight using high performance computing. This suggests it can be used as a practical and novel imaging tool. To demonstrate the framework, it has been applied to resting-state magnetoencephalographic source estimates. The results suggest that endogenous inputs to cingulate, occipital, and inferior frontal cortex are essential modulators of resting-state alpha power. Moreover, endogenous input and inhibitory and excitatory neural populations play varied roles in mediating alpha power in different resting-state sub-networks. The framework can be applied to arbitrary neural mass models and has broad applicability to image neural processes of different brain states.

摘要

神经过程复杂且难以成像。本文提出了一种新的时空分辨脑成像框架,称为神经生理过程成像(NPI),可在宏观尺度上识别大脑皮层内的神经生理过程。通过使用新的非线性推断方法将解耦的神经质量模型拟合到每个电磁场源时间序列,在源成像提供的分辨率下,在整个大脑皮层上高效准确地推断和成像群体平均膜电位和突触连接强度。该框架的效率使得使用高性能计算在一夜之间返回增强的源成像结果成为可能。这表明它可以用作一种实用且新颖的成像工具。为了演示该框架,已经将其应用于静息状态脑磁图源估计。结果表明,扣带回、枕叶和下额叶皮质的内源性输入是静息状态α功率的重要调制器。此外,内源性输入和抑制性和兴奋性神经群在介导不同静息状态子网络中的α功率方面发挥着不同的作用。该框架可应用于任意神经质量模型,并且具有广泛的适用性,可以对不同大脑状态的神经过程进行成像。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验