Sun Rui, Sohrabpour Abbas, Joseph Boney, Worrell Gregory, He Bin
Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA.
Adv Sci (Weinh). 2024 Dec;11(47):e2405246. doi: 10.1002/advs.202405246. Epub 2024 Oct 29.
Seizure localization is important for managing drug-resistant focal epilepsy. Here, the capability of a novel deep learning-based source imaging framework (DeepSIF) for imaging seizure activities from electroencephalogram (EEG) recordings in drug-resistant focal epilepsy patients is investigated. The neural mass model of ictal oscillations is adopted to generate synthetic training data with spatio-temporal-spectra features similar to ictal dynamics. The trained DeepSIF model is rigorously validated using computer simulations and in a cohort of 33 drug-resistant focal epilepsy patients with high-density (76-channel) EEG seizure recordings, by comparing DeepSIF estimates with surgical resection outcome and seizure onset zone (SOZ). These findings show that the trained DeepSIF model outperforms other methods in estimating the spatial and temporal information of origins of ictal activities. It achieves a high spatial specificity of 96% and a low spatial dispersion of 3.80 ± 5.74 mm when compared to the resection region. The source imaging results also demonstrate good coverage of SOZ, with an average distance of 10.89 ± 10.14 mm (from the SOZ to the reconstruction). These promising results suggest that DeepSIF has significant potential for advancing noninvasive imaging of the origins of ictal activities in patients with focal epilepsy, aiding management of intractable epilepsy.
癫痫灶定位对于治疗耐药性局灶性癫痫很重要。在此,研究了一种基于深度学习的新型源成像框架(DeepSIF)对耐药性局灶性癫痫患者脑电图(EEG)记录中的癫痫活动进行成像的能力。采用发作期振荡的神经质量模型来生成具有与发作期动态相似的时空频谱特征的合成训练数据。通过将DeepSIF估计值与手术切除结果和癫痫发作起始区(SOZ)进行比较,使用计算机模拟并在一组33例具有高密度(76通道)EEG癫痫发作记录的耐药性局灶性癫痫患者中对训练后的DeepSIF模型进行了严格验证。这些发现表明,训练后的DeepSIF模型在估计发作期活动起源的空间和时间信息方面优于其他方法。与切除区域相比,它实现了96%的高空间特异性和3.80±5.74毫米的低空间离散度。源成像结果还显示出对SOZ的良好覆盖,平均距离为10.89±10.14毫米(从SOZ到重建)。这些有前景的结果表明,DeepSIF在推进局灶性癫痫患者发作期活动起源的无创成像方面具有巨大潜力,有助于难治性癫痫的管理。