Suppr超能文献

基于深度学习的超声视频预测早期乳腺癌患者腋窝淋巴结转移

Prediction of axillary lymph node metastasis in early breast cancer patients with ultrasonic videos based deep learning.

作者信息

Li Wei-Bin, Du Zhi-Cheng, Liu Yue-Jie, Gao Jun-Xue, Wang Jia-Gang, Dai Qian, Huang Wen-He

机构信息

Cancer Center and Department of Breast and Thyroid Surgery, Xiang'an Hospital, School of Medicine, Xiamen University, Xiamen, China.

Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiamen, China.

出版信息

Front Oncol. 2023 Sep 1;13:1219838. doi: 10.3389/fonc.2023.1219838. eCollection 2023.

Abstract

OBJECTIVE

To develop a deep learning (DL) model for predicting axillary lymph node (ALN) metastasis using dynamic ultrasound (US) videos in breast cancer patients.

METHODS

A total of 271 US videos from 271 early breast cancer patients collected from Xiang'an Hospital of Xiamen University andShantou Central Hospitabetween September 2019 and June 2021 were used as the training, validation, and internal testing set (testing set A). Additionally, an independent dataset of 49 US videos from 49 patients with breast cancer, collected from Shanghai 10th Hospital of Tongji University from July 2021 to May 2022, was used as an external testing set (testing set B). All ALN metastases were confirmed using pathological examination. Three different convolutional neural networks (CNNs) with R2 + 1D, TIN, and ResNet-3D architectures were used to build the models. The performance of the US video DL models was compared with that of US static image DL models and axillary US examination performed by ultra-sonographers. The performances of the DL models and ultra-sonographers were evaluated based on accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). Additionally, gradient class activation mapping (Grad-CAM) technology was also used to enhance the interpretability of the models.

RESULTS

Among the three US video DL models, TIN showed the best performance, achieving an AUC of 0.914 (95% CI: 0.843-0.985) in predicting ALN metastasis in testing set A. The model achieved an accuracy of 85.25% (52/61), with a sensitivity of 76.19% (16/21) and a specificity of 90.00% (36/40). The AUC of the US video DL model was superior to that of the US static image DL model (0.856, 95% CI: 0.753-0.959, P<0.05). The Grad-CAM technology confirmed the heatmap of the model, which highlighted important subregions of the keyframe for ultra-sonographers' review.

CONCLUSION

A feasible and improved DL model to predict ALN metastasis from breast cancer US video images was developed. The DL model in this study with reliable interpretability would provide an early diagnostic strategy for the appropriate management of axillary in the early breast cancer patients.

摘要

目的

开发一种深度学习(DL)模型,用于利用乳腺癌患者的动态超声(US)视频预测腋窝淋巴结(ALN)转移。

方法

2019年9月至2021年6月期间从厦门大学附属翔安医院和汕头市中心医院收集的271例早期乳腺癌患者的271段US视频用作训练集、验证集和内部测试集(测试集A)。此外,2021年7月至2022年5月期间从同济大学附属第十人民医院收集的49例乳腺癌患者的49段US视频的独立数据集用作外部测试集(测试集B)。所有ALN转移均通过病理检查确诊。使用具有R2 + 1D、TIN和ResNet - 3D架构的三种不同卷积神经网络(CNN)构建模型。将US视频DL模型的性能与US静态图像DL模型以及超声检查医师进行的腋窝US检查的性能进行比较。基于准确性、敏感性、特异性和受试者操作特征曲线下面积(AUC)评估DL模型和超声检查医师的性能。此外,还使用梯度类激活映射(Grad - CAM)技术来增强模型的可解释性。

结果

在三种US视频DL模型中,TIN表现最佳,在测试集A中预测ALN转移的AUC为0.914(95%CI:0.843 - 0.985)。该模型的准确率为85.25%(52/61),敏感性为76.19%(16/21),特异性为90.00%(36/40)。US视频DL模型的AUC优于US静态图像DL模型(0.856,95%CI:0.753 - 0.959,P<0.05)。Grad - CAM技术确认了模型的热图,突出显示了关键帧的重要子区域以供超声检查医师查看。

结论

开发了一种可行且改进的DL模型,用于从乳腺癌US视频图像预测ALN转移。本研究中具有可靠可解释性的DL模型将为早期乳腺癌患者腋窝的适当管理提供早期诊断策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/771a/10503049/62954b052e1d/fonc-13-1219838-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验