Sun Shawn, Mutasa Simukayi, Liu Michael Z, Nemer John, Sun Mary, Siddique Maham, Desperito Elise, Jambawalikar Sachin, Ha Richard S
Department of Radiology, Columbia University Medical Center, 622 West 168th Street, PB-1-301, New York, NY, 10032, USA.
Duke University School of Medicine, USA.
Comput Biol Med. 2022 Apr;143:105250. doi: 10.1016/j.compbiomed.2022.105250. Epub 2022 Jan 24.
To investigate the ability of our convolutional neural network (CNN) to predict axillary lymph node metastasis using primary breast cancer ultrasound (US) images.
In this IRB-approved study, 338 US images (two orthogonal images) from 169 patients from 1/2014-12/2016 were used. Suspicious lymph nodes were seen on US and patients subsequently underwent core-biopsy. 64 patients had metastatic lymph nodes. A custom CNN was utilized on 248 US images from 124 patients in the training dataset and tested on 90 US images from 45 patients. The CNN was implemented entirely of 3 × 3 convolutional kernels and linear layers. The 9 convolutional kernels consisted of 6 residual layers, totaling 12 convolutional layers. Feature maps were down-sampled using strided convolutions. Dropout with a 0.5 keep probability and L2 normalization was utilized. Training was implemented by using the Adam optimizer and a final SoftMax score threshold of 0.5 from the average of raw logits from each pixel was used for two class classification (metastasis or not).
Our CNN achieved an AUC of 0.72 (SD ± 0.08) in predicting axillary lymph node metastasis from US images in the testing dataset. The model had an accuracy of 72.6% (SD ± 8.4) with a sensitivity and specificity of 65.5% (SD ± 28.6) and 78.9% (SD ± 15.1) respectively. Our algorithm is available to be shared for research use. (https://github.com/stmutasa/MetUS).
It's feasible to predict axillary lymph node metastasis from US images using a deep learning technique. This can potentially aid nodal staging in patients with breast cancer.
研究我们的卷积神经网络(CNN)利用原发性乳腺癌超声(US)图像预测腋窝淋巴结转移的能力。
在这项经机构审查委员会批准的研究中,使用了2014年1月至2016年12月期间169例患者的338张US图像(两张正交图像)。超声检查发现可疑淋巴结,随后患者接受了核心活检。64例患者有转移性淋巴结。在训练数据集中,对124例患者的248张US图像使用了定制的CNN,并在45例患者的90张US图像上进行了测试。CNN完全由3×3卷积核和线性层组成。9个卷积核由6个残差层组成,共有12个卷积层。特征图通过步长卷积进行下采样。使用保留概率为0.5的随机失活和L2归一化。使用Adam优化器进行训练,来自每个像素的原始对数its平均值的最终SoftMax分数阈值为0.5,用于二分类(转移与否)。
我们的CNN在测试数据集中从US图像预测腋窝淋巴结转移时的AUC为0.72(标准差±0.08)。该模型的准确率为72.6%(标准差±8.4),敏感性和特异性分别为65.5%(标准差±28.6)和78.9%(标准差±15.1)。我们的算法可供研究使用时共享。(https://github.com/stmutasa/MetUS)。
使用深度学习技术从US图像预测腋窝淋巴结转移是可行的。这可能有助于乳腺癌患者的淋巴结分期。