文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习在乳腺超声成像中的应用:综述

The Utility of Deep Learning in Breast Ultrasonic Imaging: A Review.

作者信息

Fujioka Tomoyuki, Mori Mio, Kubota Kazunori, Oyama Jun, Yamaga Emi, Yashima Yuka, Katsuta Leona, Nomura Kyoko, Nara Miyako, Oda Goshi, Nakagawa Tsuyoshi, Kitazume Yoshio, Tateishi Ukihide

机构信息

Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.

Department of Radiology, Dokkyo Medical University, Tochigi 321-0293, Japan.

出版信息

Diagnostics (Basel). 2020 Dec 6;10(12):1055. doi: 10.3390/diagnostics10121055.


DOI:10.3390/diagnostics10121055
PMID:33291266
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7762151/
Abstract

Breast cancer is the most frequently diagnosed cancer in women; it poses a serious threat to women's health. Thus, early detection and proper treatment can improve patient prognosis. Breast ultrasound is one of the most commonly used modalities for diagnosing and detecting breast cancer in clinical practice. Deep learning technology has made significant progress in data extraction and analysis for medical images in recent years. Therefore, the use of deep learning for breast ultrasonic imaging in clinical practice is extremely important, as it saves time, reduces radiologist fatigue, and compensates for a lack of experience and skills in some cases. This review article discusses the basic technical knowledge and algorithms of deep learning for breast ultrasound and the application of deep learning technology in image classification, object detection, segmentation, and image synthesis. Finally, we discuss the current issues and future perspectives of deep learning technology in breast ultrasound.

摘要

乳腺癌是女性中最常被诊断出的癌症;它对女性健康构成严重威胁。因此,早期发现和恰当治疗可改善患者预后。乳腺超声是临床实践中诊断和检测乳腺癌最常用的方法之一。近年来,深度学习技术在医学图像的数据提取和分析方面取得了重大进展。因此,在临床实践中使用深度学习进行乳腺超声成像极为重要,因为它节省时间、减轻放射科医生的疲劳,并且在某些情况下弥补经验和技能的不足。这篇综述文章讨论了用于乳腺超声的深度学习的基本技术知识和算法,以及深度学习技术在图像分类、目标检测、分割和图像合成中的应用。最后,我们讨论了深度学习技术在乳腺超声中的当前问题和未来前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7378/7762151/6657e45508b8/diagnostics-10-01055-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7378/7762151/ba161744da06/diagnostics-10-01055-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7378/7762151/9b493202b05f/diagnostics-10-01055-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7378/7762151/bc229d41f8ca/diagnostics-10-01055-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7378/7762151/d8cf5887da73/diagnostics-10-01055-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7378/7762151/e22abd625e9e/diagnostics-10-01055-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7378/7762151/f696ab1b84fb/diagnostics-10-01055-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7378/7762151/6657e45508b8/diagnostics-10-01055-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7378/7762151/ba161744da06/diagnostics-10-01055-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7378/7762151/9b493202b05f/diagnostics-10-01055-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7378/7762151/bc229d41f8ca/diagnostics-10-01055-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7378/7762151/d8cf5887da73/diagnostics-10-01055-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7378/7762151/e22abd625e9e/diagnostics-10-01055-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7378/7762151/f696ab1b84fb/diagnostics-10-01055-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7378/7762151/6657e45508b8/diagnostics-10-01055-g007.jpg

相似文献

[1]
The Utility of Deep Learning in Breast Ultrasonic Imaging: A Review.

Diagnostics (Basel). 2020-12-6

[2]
Artificial intelligence in breast ultrasound.

World J Radiol. 2019-2-28

[3]
Artificial Intelligence in Medical Imaging of the Breast.

Front Oncol. 2021-7-22

[4]
Medical breast ultrasound image segmentation by machine learning.

Ultrasonics. 2018-7-18

[5]
Artificial Intelligence in Breast Ultrasound: The Emerging Future of Modern Medicine.

Cureus. 2022-9-8

[6]
An experimental study on breast lesion detection and classification from ultrasound images using deep learning architectures.

BMC Med Imaging. 2019-7-1

[7]
Artificial intelligence in medical imaging of the liver.

World J Gastroenterol. 2019-2-14

[8]
The application of traditional machine learning and deep learning techniques in mammography: a review.

Front Oncol. 2023-8-11

[9]
Applying Deep Learning for Breast Cancer Detection in Radiology.

Curr Oncol. 2022-11-16

[10]
Application of Deep Learning in Histopathology Images of Breast Cancer: A Review.

Micromachines (Basel). 2022-12-11

引用本文的文献

[1]
Correlation between ultrasonic features and expression of immunohistochemical factors in invasive ductal carcinoma of the breast.

Quant Imaging Med Surg. 2025-7-1

[2]
Advancements in artificial intelligence for ultrasound diagnosis of ovarian cancer: a comprehensive review.

Front Oncol. 2025-6-12

[3]
Evaluation of AI diagnostic systems for breast ultrasound: comparative analysis with radiologists and the effect of AI assistance.

Jpn J Radiol. 2025-6-9

[4]
Variational mode directed deep learning framework for breast lesion classification using ultrasound imaging.

Sci Rep. 2025-4-24

[5]
Diagnostic dilemma of lobular carcinoma: a mini-review of imaging modalities and the role of artificial intelligence and radiomics.

Front Oncol. 2025-3-27

[6]
The Future of Breast Cancer Diagnosis in Japan with AI and Ultrasonography.

JMA J. 2025-1-15

[7]
Liver fibrosis stage classification in stacked microvascular images based on deep learning.

BMC Med Imaging. 2025-1-7

[8]
Artificial Intelligence in Breast Imaging: Opportunities, Challenges, and Legal-Ethical Considerations.

Eurasian J Med. 2023-12

[9]
DAU-Net: Dual attention-aided U-Net for segmenting tumor in breast ultrasound images.

PLoS One. 2024

[10]
Artificial intelligence-based classification of breast nodules: a quantitative morphological analysis of ultrasound images.

Quant Imaging Med Surg. 2024-5-1

本文引用的文献

[1]
Deep-learning approach with convolutional neural network for classification of maximum intensity projections of dynamic contrast-enhanced breast magnetic resonance imaging.

Magn Reson Imaging. 2021-1

[2]
The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database.

NPJ Digit Med. 2020-9-11

[3]
Efficient Anomaly Detection with Generative Adversarial Network for Breast Ultrasound Imaging.

Diagnostics (Basel). 2020-7-4

[4]
Feasibility of new fat suppression for breast MRI using pix2pix.

Jpn J Radiol. 2020-11

[5]
Virtual Interpolation Images of Tumor Development and Growth on Breast Ultrasound Image Synthesis With Deep Convolutional Generative Adversarial Networks.

J Ultrasound Med. 2021-1

[6]
Classification of Breast Masses on Ultrasound Shear Wave Elastography using Convolutional Neural Networks.

Ultrason Imaging. 2020

[7]
Detection and Diagnosis of Breast Cancer Using Artificial Intelligence Based assessment of Maximum Intensity Projection Dynamic Contrast-Enhanced Magnetic Resonance Images.

Diagnostics (Basel). 2020-5-20

[8]
Prediction of Oncotype DX recurrence score using deep multi-layer perceptrons in estrogen receptor-positive, HER2-negative breast cancer.

Breast Cancer. 2020-9

[9]
Should We Ignore, Follow, or Biopsy? Impact of Artificial Intelligence Decision Support on Breast Ultrasound Lesion Assessment.

AJR Am J Roentgenol. 2020-4-22

[10]
Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network.

Comput Methods Programs Biomed. 2020-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索