Holt Jeana M, Talsma AkkeNeel, Johnson Teresa S, Ehlinger Timothy
School of Nursing, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, United States.
JAMIA Open. 2023 Sep 14;6(3):ooad080. doi: 10.1093/jamiaopen/ooad080. eCollection 2023 Oct.
To analyze PeriData.Net, a clinical registry with linked maternal-infant hospital data of Milwaukee County residents, to demonstrate a predictive analytic approach to perinatal infant risk assessment.
Using unsupervised learning, we identified infant birth clusters with similar multivariate health indicator patterns, measured using perinatal variables from 2008 to 2019 from = 43 969 clinical registry records in Milwaukee County, WI, followed by supervised learning risk-propagation modeling to identify key maternal factors. To understand the relationship between socioeconomic status (SES) and birth outcome cluster assignment, we recoded zip codes in Peridata.Net according to SES level.
Three self-organizing map clusters describe infant birth outcome patterns that are similar in the multivariate space. Birth outcome clusters showed higher hazard birth outcome patterns in cluster 3 than clusters 1 and 2. Cluster 3 was associated with lower Apgar scores at 1 and 5 min after birth, shorter infant length, and premature birth. Prediction profiles of birth clusters indicate the most sensitivity to pregnancy weight loss and prenatal visits. Majority of infants assigned to cluster 3 were in the 2 lowest SES levels.
Using an extensive perinatal clinical registry, we found that the strongest predictive performance, when considering cluster membership using supervised learning, was achieved by incorporating social and behavioral risk factors. There were inequalities in infant birth outcomes based on SES.
Identifying infant risk hazard profiles can contribute to knowledge discovery and guide future research directions. Additionally, presenting the results to community members can build consensus for community-identified health and risk indicator prioritization for intervention development.
分析PeriData.Net(一个包含密尔沃基县居民母婴医院关联数据的临床登记系统),以展示一种围产期婴儿风险评估的预测分析方法。
我们使用无监督学习,从威斯康星州密尔沃基县43969份临床登记记录中,利用2008年至2019年的围产期变量,识别出具有相似多变量健康指标模式的婴儿出生集群,随后进行监督学习风险传播建模以确定关键的母亲因素。为了解社会经济地位(SES)与出生结局集群分配之间的关系,我们根据SES水平对Peridata.Net中的邮政编码进行重新编码。
三个自组织映射集群描述了在多变量空间中相似的婴儿出生结局模式。出生结局集群3显示出比集群1和2更高的不良出生结局模式。集群3与出生后1分钟和5分钟时较低的阿氏评分、较短的婴儿身长以及早产有关。出生集群的预测概况表明对孕期体重减轻和产前检查最为敏感。分配到集群3的大多数婴儿处于最低的两个SES水平。
通过使用一个广泛的围产期临床登记系统,我们发现,在使用监督学习考虑集群成员身份时,纳入社会和行为风险因素能实现最强的预测性能。基于SES的婴儿出生结局存在不平等现象。
识别婴儿风险概况有助于知识发现并指导未来的研究方向。此外,向社区成员展示结果可为社区确定的健康和风险指标优先排序以制定干预措施建立共识。