Suppr超能文献

预测儿童重度哮喘急性发作:基于行政索赔数据的预测模型

Predicting pediatric severe asthma exacerbations: an administrative claims-based predictive model.

作者信息

Rezaeiahari Mandana, Brown Clare C, Eyimina Arina, Perry Tamara T, Goudie Anthony, Boyd Melanie, Tilford J Mick, Jefferson Akilah A

机构信息

College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA.

Department of Pediatrics, Allergy & Immunology Division, University of Arkansas for Medical Sciences, Little Rock, AR, USA.

出版信息

J Asthma. 2024 Mar;61(3):203-211. doi: 10.1080/02770903.2023.2260881. Epub 2024 Feb 8.

Abstract

OBJECTIVE

Previous machine learning approaches fail to consider race and ethnicity and social determinants of health (SDOH) to predict childhood asthma exacerbations. A predictive model for asthma exacerbations in children is developed to explore the importance of race and ethnicity, rural-urban commuting area (RUCA) codes, the Child Opportunity Index (COI), and other ICD-10 SDOH in predicting asthma outcomes.

METHODS

Insurance and coverage claims data from the Arkansas All-Payer Claims Database were used to capture risk factors. We identified a cohort of 22,631 children with asthma aged 5-18 years with 2 years of continuous Medicaid enrollment and at least one asthma diagnosis in 2018. The goal was to predict asthma-related hospitalizations and asthma-related emergency department (ED) visits in 2019. The analytic sample was 59% age 5-11 years, 39% White, 33% Black, and 6% Hispanic. Conditional random forest models were used to train the model.

RESULTS

The model yielded an area under the curve (AUC) of 72%, sensitivity of 55% and specificity of 78% in the OOB samples and AUC of 73%, sensitivity of 58% and specificity of 77% in the training samples. Consistent with previous literature, asthma-related hospitalization or ED visits in the previous year (2018) were the two most important variables in predicting hospital or ED use in the following year (2019), followed by the total number of reliever and controller medications.

CONCLUSIONS

Predictive models for asthma-related exacerbation achieved moderate accuracy, but race and ethnicity, ICD-10 SDOH, RUCA codes, and COI measures were not important in improving model accuracy.

摘要

目的

以往的机器学习方法未能考虑种族、族裔和健康的社会决定因素(SDOH)来预测儿童哮喘发作。开发了一种儿童哮喘发作预测模型,以探讨种族、族裔、城乡通勤区(RUCA)代码、儿童机会指数(COI)以及其他国际疾病分类第十版(ICD-10)的SDOH在预测哮喘结局中的重要性。

方法

使用来自阿肯色州全支付者索赔数据库的保险和承保索赔数据来获取风险因素。我们确定了一组22631名5至18岁的哮喘儿童,他们连续两年参加医疗补助计划,并在2018年至少有一次哮喘诊断。目标是预测2019年与哮喘相关的住院和急诊就诊情况。分析样本中59%为5至11岁,39%为白人,33%为黑人,6%为西班牙裔。使用条件随机森林模型训练该模型。

结果

该模型在袋外(OOB)样本中的曲线下面积(AUC)为72%,灵敏度为55%,特异度为78%;在训练样本中的AUC为73%,灵敏度为58%,特异度为77%。与以往文献一致,上一年(2018年)与哮喘相关的住院或急诊就诊是预测下一年(2019年)住院或急诊使用的两个最重要变量,其次是缓解药物和控制药物的总数。

结论

哮喘相关发作的预测模型达到了中等准确性,但种族、族裔、ICD-10 SDOH、RUCA代码和COI指标在提高模型准确性方面并不重要。

相似文献

1
Predicting pediatric severe asthma exacerbations: an administrative claims-based predictive model.
J Asthma. 2024 Mar;61(3):203-211. doi: 10.1080/02770903.2023.2260881. Epub 2024 Feb 8.
2
Predicting hospitalization of pediatric asthma patients in emergency departments using machine learning.
Int J Med Inform. 2021 Jul;151:104468. doi: 10.1016/j.ijmedinf.2021.104468. Epub 2021 Apr 20.
4
A comparison of administrative claims-based risk predictors for pediatric asthma.
Am J Manag Care. 2021 Dec;27(12):533-537. doi: 10.37765/ajmc.2021.88792.
6
Asthma Surveillance - United States, 2006-2018.
MMWR Surveill Summ. 2021 Sep 17;70(5):1-32. doi: 10.15585/mmwr.ss7005a1.
7
Asthma Quality Measurement and Adverse Outcomes in Medicaid-Enrolled Children.
Pediatrics. 2023 Aug 1;152(2). doi: 10.1542/peds.2022-059812.
8
Urban residence, neighborhood poverty, race/ethnicity, and asthma morbidity among children on Medicaid.
J Allergy Clin Immunol. 2017 Sep;140(3):822-827. doi: 10.1016/j.jaci.2017.01.036. Epub 2017 Mar 8.
10
Asthma medication ratio predicts emergency department visits and hospitalizations in children with asthma.
Medicare Medicaid Res Rev. 2013 Dec 16;3(4). doi: 10.5600/mmrr.003.04.a05. eCollection 2013.

引用本文的文献

1
Applications of machine learning approaches for pediatric asthma exacerbation management: a systematic review.
BMC Med Inform Decis Mak. 2025 Apr 18;25(1):170. doi: 10.1186/s12911-025-02990-0.

本文引用的文献

1
Z-code documentation to identify social determinants of health among Medicaid beneficiaries.
Res Social Adm Pharm. 2023 Jan;19(1):180-183. doi: 10.1016/j.sapharm.2022.10.010. Epub 2022 Oct 29.
2
Evaluation of a pediatric asthma high-risk scoring algorithm.
Am J Manag Care. 2022 Jun;28(6):254-260. doi: 10.37765/ajmc.2022.88788.
3
A comparison of administrative claims-based risk predictors for pediatric asthma.
Am J Manag Care. 2021 Dec;27(12):533-537. doi: 10.37765/ajmc.2021.88792.
4
Social Risk Interventions and Health Care Utilization for Pediatric Asthma: A Systematic Review and Meta-analysis.
JAMA Pediatr. 2022 Feb 1;176(2):e215103. doi: 10.1001/jamapediatrics.2021.5103. Epub 2022 Feb 7.
5
Evaluation of Risk Scores to Predict Pediatric Severe Asthma Exacerbations.
J Allergy Clin Immunol Pract. 2021 Dec;9(12):4393-4401.e8. doi: 10.1016/j.jaip.2021.08.030. Epub 2021 Sep 8.
6
Predicting hospitalization of pediatric asthma patients in emergency departments using machine learning.
Int J Med Inform. 2021 Jul;151:104468. doi: 10.1016/j.ijmedinf.2021.104468. Epub 2021 Apr 20.
7
Predicting Severe Asthma Exacerbations in Children: Blueprint for Today and Tomorrow.
J Allergy Clin Immunol Pract. 2021 Jul;9(7):2619-2626. doi: 10.1016/j.jaip.2021.03.039. Epub 2021 Apr 5.
8
Conditional permutation importance revisited.
BMC Bioinformatics. 2020 Jul 14;21(1):307. doi: 10.1186/s12859-020-03622-2.
9
The Impact of Social Determinants of Health on Children with Asthma.
J Allergy Clin Immunol Pract. 2020 Jun;8(6):1808-1814. doi: 10.1016/j.jaip.2020.03.028. Epub 2020 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验