Suppr超能文献

即时护理人工智能辅助分步超声气胸诊断。

Point-of-care AI-assisted stepwise ultrasound pneumothorax diagnosis.

机构信息

Center for Advanced Medical Computing and Analysis, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, United States of America.

Data Science Office, Mass General Brigham, Boston, MA, 02114, United States of America.

出版信息

Phys Med Biol. 2023 Oct 6;68(20). doi: 10.1088/1361-6560/acfb70.

Abstract

. Ultrasound is extensively utilized as a convenient and cost-effective method in emergency situations. Unfortunately, the limited availability of skilled clinicians in emergency hinders the wider adoption of point-of-care ultrasound. To overcome this challenge, this paper aims to aid less experienced healthcare providers in emergency lung ultrasound scans.. To assist healthcare providers, it is important to have a comprehensive model that can automatically guide the entire process of lung ultrasound based on the clinician's workflow. In this paper, we propose a framework for diagnosing pneumothorax using artificial intelligence (AI) assistance. Specifically, the proposed framework for lung ultrasound scan follows the steps taken by skilled physicians. It begins with finding the appropriate transducer position on the chest to locate the pleural line accurately in B-mode. The next step involves acquiring temporal M-mode data to determine the presence of lung sliding, a crucial indicator for pneumothorax. To mimic the sequential process of clinicians, two DL models were developed. The first model focuses on quality assurance (QA) and regression of the pleural line region-of-interest, while the second model classifies lung sliding. To achieve the inference on a mobile device, a size of EfficientNet-Lite0 model was further reduced to have fewer than 3 million parameters.. The results showed that both the QA and lung sliding classification models achieved over 95% in area under the receiver operating characteristic (AUC), while the ROI performance reached 89% in the dice similarity coefficient. The entire stepwise pipeline was simulated using retrospective data, yielding an AUC of 89%.. The step-wise AI framework for the pneumothorax diagnosis with QA offers an intelligible guide for each clinical workflow, which achieved significantly high precision and real-time inferences.

摘要

超声在急救中作为一种方便且经济有效的方法得到了广泛应用。然而,急救中熟练临床医生的有限可用性阻碍了即时护理超声的更广泛采用。为了克服这一挑战,本文旨在帮助急救经验较少的医疗保健提供者进行肺部超声检查。

为了帮助医疗保健提供者,重要的是要有一个全面的模型,该模型可以根据临床医生的工作流程自动指导整个肺部超声过程。在本文中,我们提出了一种使用人工智能(AI)辅助诊断气胸的框架。具体来说,所提出的肺部超声扫描框架遵循熟练医生所采取的步骤。它首先从在胸部上找到合适的换能器位置开始,以在 B 模式下准确找到胸膜线。下一步涉及获取时间 M 模式数据以确定肺滑动的存在,这是气胸的一个关键指标。为了模拟临床医生的顺序过程,开发了两个深度学习(DL)模型。第一个模型专注于质量保证(QA)和感兴趣区域胸膜线的回归,而第二个模型则对肺滑动进行分类。为了在移动设备上实现推理,将 EfficientNet-Lite0 模型的大小进一步缩小,使其参数少于 300 万。

结果表明,QA 和肺滑动分类模型的 AUC 均超过 95%,而 ROI 性能的 Dice 相似系数达到 89%。使用回顾性数据模拟了整个分步流水线,AUC 为 89%。

具有 QA 的气胸诊断的分步 AI 框架为每个临床工作流程提供了一个可理解的指导,实现了显著的高精度和实时推理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验